Probing Multimodal Large Language Models for Global and Local Semantic Representations
- URL: http://arxiv.org/abs/2402.17304v3
- Date: Thu, 21 Nov 2024 07:03:33 GMT
- Title: Probing Multimodal Large Language Models for Global and Local Semantic Representations
- Authors: Mingxu Tao, Quzhe Huang, Kun Xu, Liwei Chen, Yansong Feng, Dongyan Zhao,
- Abstract summary: We study which layers of Multimodal Large Language Models make the most effort to the global image information.
In this study, we find that the intermediate layers of models can encode more global semantic information.
We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information.
- Score: 57.25949445963422
- License:
- Abstract: The advancement of Multimodal Large Language Models (MLLMs) has greatly accelerated the development of applications in understanding integrated texts and images. Recent works leverage image-caption datasets to train MLLMs, achieving state-of-the-art performance on image-to-text tasks. However, there are few studies exploring which layers of MLLMs make the most effort to the global image information, which plays vital roles in multimodal comprehension and generation. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models regarding local semantic representations through object recognition tasks. We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information. Our code and data are released via https://github.com/kobayashikanna01/probing_MLLM_rep.
Related papers
- Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - General Object Foundation Model for Images and Videos at Scale [99.2806103051613]
We present GLEE, an object-level foundation model for locating and identifying objects in images and videos.
GLEE accomplishes detection, segmentation, tracking, grounding, and identification of arbitrary objects in the open world scenario.
We employ an image encoder, text encoder, and visual prompter to handle multi-modal inputs, enabling to simultaneously solve various object-centric downstream tasks.
arXiv Detail & Related papers (2023-12-14T17:26:00Z) - MLLMs-Augmented Visual-Language Representation Learning [70.5293060238008]
We demonstrate that Multi-modal Large Language Models (MLLMs) can enhance visual-language representation learning.
Our approach is simple, utilizing MLLMs to extend multiple diverse captions for each image.
We propose "text shearing" to maintain the quality and availability of extended captions.
arXiv Detail & Related papers (2023-11-30T18:05:52Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - Global and Local Semantic Completion Learning for Vision-Language
Pre-training [34.740507502215536]
Cross-modal alignment plays a crucial role in vision-language pre-training models.
We propose a novel Global and Local Semantic Completion Learning (GLSCL) task to facilitate global-local alignment and local-local alignment simultaneously.
arXiv Detail & Related papers (2023-06-12T13:20:29Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
Cross-modal alignment is essential for vision-language pre-training models.
We propose a novel Semantic Completion Learning task to facilitate global-to-local alignment.
We also present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously.
arXiv Detail & Related papers (2022-11-24T06:39:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.