Improving Large Vision-Language Models' Understanding for Field Data
- URL: http://arxiv.org/abs/2507.18311v1
- Date: Thu, 24 Jul 2025 11:28:53 GMT
- Title: Improving Large Vision-Language Models' Understanding for Field Data
- Authors: Xiaomei Zhang, Hanyu Zheng, Xiangyu Zhu, Jinghuan Wei, Junhong Zou, Zhen Lei, Zhaoxiang Zhang,
- Abstract summary: We introduce FieldLVLM, a framework designed to improve large vision-language models' understanding of field data.<n>FieldLVLM consists of two main components: a field-aware language generation strategy and a data-compressed multimodal model tuning.<n> Experimental results on newly proposed benchmark datasets demonstrate that FieldLVLM significantly outperforms existing methods in tasks involving scientific field data.
- Score: 62.917026891829025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have shown impressive capabilities across a range of tasks that integrate visual and textual understanding, such as image captioning and visual question answering. These models are trained on large-scale image and video datasets paired with text, enabling them to bridge visual perception and natural language processing. However, their application to scientific domains, especially in interpreting complex field data commonly used in the natural sciences, remains underexplored. In this work, we introduce FieldLVLM, a novel framework designed to improve large vision-language models' understanding of field data. FieldLVLM consists of two main components: a field-aware language generation strategy and a data-compressed multimodal model tuning. The field-aware language generation strategy leverages a special-purpose machine learning pipeline to extract key physical features from field data, such as flow classification, Reynolds number, and vortex patterns. This information is then converted into structured textual descriptions that serve as a dataset. The data-compressed multimodal model tuning focuses on LVLMs with these generated datasets, using a data compression strategy to reduce the complexity of field inputs and retain only the most informative values. This ensures compatibility with the models language decoder and guides its learning more effectively. Experimental results on newly proposed benchmark datasets demonstrate that FieldLVLM significantly outperforms existing methods in tasks involving scientific field data. Our findings suggest that this approach opens up new possibilities for applying large vision-language models to scientific research, helping bridge the gap between large models and domain-specific discovery.
Related papers
- Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy [2.294223504228228]
Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems.<n>Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning.<n>Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview.
arXiv Detail & Related papers (2024-12-23T18:15:19Z) - Seeing Syntax: Uncovering Syntactic Learning Limitations in Vision-Language Models [18.87130615326443]
Vision-language models (VLMs) serve as foundation models for image captioning and text-to-image generation.<n>Recent studies have highlighted limitations in VLM text encoders, particularly in areas like compositionality and semantic understanding.
arXiv Detail & Related papers (2024-12-11T05:37:04Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - ERASMO: Leveraging Large Language Models for Enhanced Clustering Segmentation [0.0]
Cluster analysis plays a crucial role in various domains and applications, such as customer segmentation in marketing.<n>This study introduces ERASMO, a framework designed to fine-tune a pretrained language model on textually encoded data.
arXiv Detail & Related papers (2024-10-01T00:37:16Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.