RAGFormer: Learning Semantic Attributes and Topological Structure for Fraud Detection
- URL: http://arxiv.org/abs/2402.17472v3
- Date: Sat, 18 May 2024 14:23:09 GMT
- Title: RAGFormer: Learning Semantic Attributes and Topological Structure for Fraud Detection
- Authors: Haolin Li, Shuyang Jiang, Lifeng Zhang, Siyuan Du, Guangnan Ye, Hongfeng Chai,
- Abstract summary: We present a novel framework called Relation-Aware GNN with transFormer(RAGFormer)
RAGFormer embeds both semantic and topological features into a target node.
The simple yet effective network consists of a semantic encoder, a topology encoder, and an attention fusion module.
- Score: 8.050935113945428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fraud detection remains a challenging task due to the complex and deceptive nature of fraudulent activities. Current approaches primarily concentrate on learning only one perspective of the graph: either the topological structure of the graph or the attributes of individual nodes. However, we conduct empirical studies to reveal that these two types of features, while nearly orthogonal, are each independently effective. As a result, previous methods can not fully capture the comprehensive characteristics of the fraud graph. To address this dilemma, we present a novel framework called Relation-Aware GNN with transFormer~(RAGFormer) which simultaneously embeds both semantic and topological features into a target node. The simple yet effective network consists of a semantic encoder, a topology encoder, and an attention fusion module. The semantic encoder utilizes Transformer to learn semantic features and node interactions across different relations. We introduce Relation-Aware GNN as the topology encoder to learn topological features and node interactions within each relation. These two complementary features are interleaved through an attention fusion module to support prediction by both orthogonal features. Extensive experiments on two popular public datasets demonstrate that RAGFormer achieves state-of-the-art performance. The significant improvement of RAGFormer in an industrial credit card fraud detection dataset further validates the applicability of our method in real-world business scenarios.
Related papers
- Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Dynamic Relation-Attentive Graph Neural Networks for Fraud Detection [5.294604210205507]
Graph-based fraud detection methods consider this task as a classification problem with two classes: frauds or normal.
We address this problem using Graph Neural Networks (GNNs) by proposing a dynamic relation-attentive aggregation mechanism.
Experimental results show that our method, DRAG, outperforms state-of-the-art fraud detection methods on real-world benchmark datasets.
arXiv Detail & Related papers (2023-10-06T11:41:38Z) - Learning to Identify Graphs from Node Trajectories in Multi-Robot
Networks [15.36505600407192]
We propose a learning-based approach that efficiently uncovers graph topologies with global convergence guarantees.
We demonstrate the effectiveness of our approach in identifying graphs in multi-robot formation and flocking tasks.
arXiv Detail & Related papers (2023-07-10T07:09:12Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
We argue that the performance degradation is mainly attributed to the inconsistency between topology and attribute.
We propose a simple and effective method that uses the attention mechanism to adaptively fuse two views.
Our model can significantly outperform stateof-the-art baselines on real-world fraud detection datasets.
arXiv Detail & Related papers (2022-10-22T08:21:49Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - BSAL: A Framework of Bi-component Structure and Attribute Learning for
Link Prediction [33.488229191263564]
We propose a bicomponent structural and attribute learning framework (BSAL) that is designed to adaptively leverage information from topology and feature spaces.
BSAL constructs a semantic topology via the node attributes and then gets the embeddings regarding the semantic view.
It provides a flexible and easy-to-implement solution to adaptively incorporate the information carried by the node attributes.
arXiv Detail & Related papers (2022-04-18T03:12:13Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.