Multitask Active Learning for Graph Anomaly Detection
- URL: http://arxiv.org/abs/2401.13210v1
- Date: Wed, 24 Jan 2024 03:43:45 GMT
- Title: Multitask Active Learning for Graph Anomaly Detection
- Authors: Wenjing Chang, Kay Liu, Kaize Ding, Philip S. Yu, Jianjun Yu
- Abstract summary: We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
- Score: 48.690169078479116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the web era, graph machine learning has been widely used on ubiquitous
graph-structured data. As a pivotal component for bolstering web security and
enhancing the robustness of graph-based applications, the significance of graph
anomaly detection is continually increasing. While Graph Neural Networks (GNNs)
have demonstrated efficacy in supervised and semi-supervised graph anomaly
detection, their performance is contingent upon the availability of sufficient
ground truth labels. The labor-intensive nature of identifying anomalies from
complex graph structures poses a significant challenge in real-world
applications. Despite that, the indirect supervision signals from other tasks
(e.g., node classification) are relatively abundant. In this paper, we propose
a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
Firstly, by coupling node classification tasks, MITIGATE obtains the capability
to detect out-of-distribution nodes without known anomalies. Secondly, MITIGATE
quantifies the informativeness of nodes by the confidence difference across
tasks, allowing samples with conflicting predictions to provide informative yet
not excessively challenging information for subsequent training. Finally, to
enhance the likelihood of selecting representative nodes that are distant from
known patterns, MITIGATE adopts a masked aggregation mechanism for distance
measurement, considering both inherent features of nodes and current labeled
status. Empirical studies on four datasets demonstrate that MITIGATE
significantly outperforms the state-of-the-art methods for anomaly detection.
Our code is publicly available at: https://github.com/AhaChang/MITIGATE.
Related papers
- Imbalanced Graph-Level Anomaly Detection via Counterfactual Augmentation and Feature Learning [1.3756846638796]
We propose an imbalanced GLAD method via counterfactual augmentation and feature learning.
We apply the model to brain disease datasets, which can prove the capability of our work.
arXiv Detail & Related papers (2024-07-13T13:40:06Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - Learning on Graphs with Out-of-Distribution Nodes [33.141867473074264]
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs.
This work defines the problem of graph learning with out-of-distribution nodes.
We propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes.
arXiv Detail & Related papers (2023-08-13T08:10:23Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - Unveiling Anomalous Edges and Nominal Connectivity of Attributed
Networks [53.56901624204265]
The present work deals with uncovering anomalous edges in attributed graphs using two distinct formulations with complementary strengths.
The first relies on decomposing the graph data matrix into low rank plus sparse components to improve markedly performance.
The second broadens the scope of the first by performing robust recovery of the unperturbed graph, which enhances the anomaly identification performance.
arXiv Detail & Related papers (2021-04-17T20:00:40Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.