REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering
- URL: http://arxiv.org/abs/2402.17497v2
- Date: Thu, 21 Nov 2024 08:44:20 GMT
- Title: REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering
- Authors: Yuhao Wang, Ruiyang Ren, Junyi Li, Wayne Xin Zhao, Jing Liu, Ji-Rong Wen,
- Abstract summary: REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
- Score: 115.72130322143275
- License:
- Abstract: Considering the limited internal parametric knowledge, retrieval-augmented generation (RAG) has been widely used to extend the knowledge scope of large language models (LLMs). Despite the extensive efforts on RAG research, in existing methods, LLMs cannot precisely assess the relevance of retrieved documents, thus likely leading to misleading or even incorrect utilization of external knowledge (eg., retrieved documents). To address this issue, in this paper, we propose REAR, a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA). As the key motivation, we aim to enhance the self-awareness regarding the reliability of external knowledge for LLMs, so as to adaptively utilize external knowledge in RAG systems. Specially, we develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module that precisely assesses the relevance of retrieved documents. Furthermore, we propose an improved training method based on bi-granularity relevance fusion and noise-resistant training. By combining the improvements in both architecture and training, our proposed REAR can better utilize external knowledge by effectively perceiving the relevance of retrieved documents. Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches. Our codes can be accessed at https://github.com/RUCAIBox/REAR.
Related papers
- Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
Large Language Models (LLMs) remain vulnerable to hallucinations due to their limited parametric knowledge and lack of domain-specific expertise.
Retrieval-Augmented Generation (RAG) addresses this challenge by incorporating external document retrieval to augment the knowledge base of LLMs.
We introduce a compact, efficient, and pluggable module designed to refine external knowledge sources before feeding them to the generator.
arXiv Detail & Related papers (2025-02-18T16:38:39Z) - Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG [24.660769275714685]
Retrieval-Augmented Generation (RAG) has emerged as a prominent method for incorporating domain knowledge into Large Language Models (LLMs)
We present a novel framework that significantly enhances the fine-tuning process by augmenting the training data in two ways -- context augmentation and knowledge paraphrasing.
arXiv Detail & Related papers (2025-02-12T12:39:51Z) - Parametric Retrieval Augmented Generation [32.29608109539912]
Parametric RAG is a new RAG paradigm that integrates external knowledge directly into the parameters of feed-forward networks.
It substantially enhances both the effectiveness and efficiency of knowledge augmentation in large language models.
arXiv Detail & Related papers (2025-01-27T10:04:49Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge.
To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources.
We propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - The Power of Noise: Redefining Retrieval for RAG Systems [19.387105120040157]
Retrieval-Augmented Generation (RAG) has emerged as a method to extend beyond the pre-trained knowledge of Large Language Models.
We focus on the type of passages IR systems within a RAG solution should retrieve.
arXiv Detail & Related papers (2024-01-26T14:14:59Z) - Merging Generated and Retrieved Knowledge for Open-Domain QA [72.42262579925911]
COMBO is a compatibility-Oriented knowledge Merging for Better Open-domain QA framework.
We show that COMBO outperforms competitive baselines on three out of four tested open-domain QA benchmarks.
arXiv Detail & Related papers (2023-10-22T19:37:06Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.