Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers
- URL: http://arxiv.org/abs/2402.17564v2
- Date: Wed, 17 Apr 2024 03:17:58 GMT
- Title: Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers
- Authors: Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan Lu, Yaliang Li, Ji-Rong Wen,
- Abstract summary: We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
- Score: 108.72225067368592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic prompt optimization is an important approach to improving the performance of large language models (LLMs). Recent research demonstrates the potential of using LLMs as prompt optimizers, which can generate improved task prompts via iterative refinement. In this paper, we propose a novel perspective to investigate the design of LLM-based prompt optimizers, by drawing an analogy with gradient-based model optimizers. To connect these two approaches, we identify two pivotal factors in model parameter learning: update direction and update method. Focused on the two aspects, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies for LLM-based prompt optimizers. By systematically analyzing a rich set of improvement strategies, we further develop a capable Gradient-inspired LLM-based Prompt Optimizer called GPO. At each step, it first retrieves relevant prompts from the optimization trajectory as the update direction. Then, it utilizes the generation-based refinement strategy to perform the update, while controlling the edit distance through a cosine-based decay strategy. Extensive experiments demonstrate the effectiveness and efficiency of GPO. In particular, GPO brings an additional improvement of up to 56.8% on Big-Bench Hard and 55.3% on MMLU compared to baseline methods.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - WarpAdam: A new Adam optimizer based on Meta-Learning approach [0.0]
This study introduces an innovative approach that merges the 'warped gradient descend' concept from Meta Learning with the Adam.
By introducing a learnable distortion matrix P within the adaptation matrix P, we aim to enhance the model's capability across diverse data distributions.
Our research showcases potential of this novel approach through theoretical insights and empirical evaluations.
arXiv Detail & Related papers (2024-09-06T12:51:10Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
Code written by developers usually suffers from efficiency problems and contain various performance bugs.
Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs)
We propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods.
arXiv Detail & Related papers (2024-08-22T06:59:46Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
We show that gradient-based optimization and large language models (MsLL) are complementary to each other, suggesting a collaborative optimization approach.
Our code is released at https://www.guozix.com/guozix/LLM-catalyst.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Large Language Models As Evolution Strategies [6.873777465945062]
In this work, we investigate whether large language models (LLMs) are in principle capable of implementing evolutionary optimization algorithms.
We introduce a novel prompting strategy, consisting of least-to-most sorting of discretized population members.
We find that our setup allows the user to obtain an LLM-based evolution strategy, which we call EvoLLM', that robustly outperforms baseline algorithms.
arXiv Detail & Related papers (2024-02-28T15:02:17Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods.
This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization.
arXiv Detail & Related papers (2021-03-23T20:46:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.