Autonomous Vehicles: Evolution of Artificial Intelligence and Learning
Algorithms
- URL: http://arxiv.org/abs/2402.17690v2
- Date: Wed, 28 Feb 2024 15:53:07 GMT
- Title: Autonomous Vehicles: Evolution of Artificial Intelligence and Learning
Algorithms
- Authors: Divya Garikapati and Sneha Sudhir Shetiya
- Abstract summary: The study presents statistical insights into the usage and types of AI/learning algorithms over the years.
The paper highlights the pivotal role of parameters in refining algorithms for both trucks and cars.
It concludes by outlining different levels of autonomy, elucidating the nuanced usage of AI and learning algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of autonomous vehicles has heralded a transformative era in
transportation, reshaping the landscape of mobility through cutting-edge
technologies. Central to this evolution is the integration of Artificial
Intelligence (AI) and learning algorithms, propelling vehicles into realms of
unprecedented autonomy. This paper provides a comprehensive exploration of the
evolutionary trajectory of AI within autonomous vehicles, tracing the journey
from foundational principles to the most recent advancements. Commencing with a
current landscape overview, the paper delves into the fundamental role of AI in
shaping the autonomous decision-making capabilities of vehicles. It elucidates
the steps involved in the AI-powered development life cycle in vehicles,
addressing ethical considerations and bias in AI-driven software development
for autonomous vehicles. The study presents statistical insights into the usage
and types of AI/learning algorithms over the years, showcasing the evolving
research landscape within the automotive industry. Furthermore, the paper
highlights the pivotal role of parameters in refining algorithms for both
trucks and cars, facilitating vehicles to adapt, learn, and improve performance
over time. It concludes by outlining different levels of autonomy, elucidating
the nuanced usage of AI and learning algorithms, and automating key tasks at
each level. Additionally, the document discusses the variation in software
package sizes across different autonomy levels
Related papers
- Self-Driving Car Racing: Application of Deep Reinforcement Learning [0.0]
The project aims to develop an AI agent that efficiently drives a simulated car in the OpenAI Gymnasium CarRacing environment.
We investigate various RL algorithms, including Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and novel adaptations that incorporate transfer learning and recurrent neural networks (RNNs) for enhanced performance.
arXiv Detail & Related papers (2024-10-30T07:32:25Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Towards Knowledge-driven Autonomous Driving [37.003908817857095]
This paper explores the emerging knowledge-driven autonomous driving technologies.
Our investigation highlights the limitations of current autonomous driving systems.
Knowledge-driven methods with the abilities of cognition, generalization and life-long learning emerge as a promising way to overcome these challenges.
arXiv Detail & Related papers (2023-12-07T14:17:17Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
This review systematically assesses over seventy open-source autonomous driving datasets.
It offers insights into various aspects, such as the principles underlying the creation of high-quality datasets.
It also delves into the scientific and technical challenges that warrant resolution.
arXiv Detail & Related papers (2023-12-06T10:46:53Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - Cloud2Edge Elastic AI Framework for Prototyping and Deployment of AI
Inference Engines in Autonomous Vehicles [1.688204090869186]
This paper proposes a novel framework for developing AI Inference Engines for autonomous driving applications based on deep learning modules.
We introduce a simple yet elegant solution for the AI components development cycle, where prototyping takes place in the cloud according to the Software-in-the-Loop (SiL) paradigm.
The effectiveness of the proposed framework is demonstrated using two real-world use-cases of AI inference engines for autonomous vehicles.
arXiv Detail & Related papers (2020-09-23T09:23:29Z) - A Survey on Autonomous Vehicle Control in the Era of Mixed-Autonomy:
From Physics-Based to AI-Guided Driving Policy Learning [7.881140597011731]
This paper serves as an introduction and overview of the potentially useful models and methodologies from artificial intelligence (AI) into the field of transportation engineering for autonomous vehicle (AV) control.
We will discuss state-of-the-art applications of AI-guided methods, identify opportunities and obstacles, raise open questions, and help suggest the building blocks and areas where AI could play a role in mixed autonomy.
arXiv Detail & Related papers (2020-07-10T04:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.