Self-Driving Car Racing: Application of Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2410.22766v1
- Date: Wed, 30 Oct 2024 07:32:25 GMT
- Title: Self-Driving Car Racing: Application of Deep Reinforcement Learning
- Authors: Florentiana Yuwono, Gan Pang Yen, Jason Christopher,
- Abstract summary: The project aims to develop an AI agent that efficiently drives a simulated car in the OpenAI Gymnasium CarRacing environment.
We investigate various RL algorithms, including Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and novel adaptations that incorporate transfer learning and recurrent neural networks (RNNs) for enhanced performance.
- Score: 0.0
- License:
- Abstract: This paper explores the application of deep reinforcement learning (RL) techniques in the domain of autonomous self-driving car racing. Motivated by the rise of AI-driven mobility and autonomous racing events, the project aims to develop an AI agent that efficiently drives a simulated car in the OpenAI Gymnasium CarRacing environment. We investigate various RL algorithms, including Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and novel adaptations that incorporate transfer learning and recurrent neural networks (RNNs) for enhanced performance. The project demonstrates that while DQN provides a strong baseline for policy learning, integrating ResNet and LSTM models significantly improves the agent's ability to capture complex spatial and temporal dynamics. PPO, particularly in continuous action spaces, shows promising results for fine control, although challenges such as policy collapse remain. We compare the performance of these approaches and outline future research directions focused on improving computational efficiency and addressing model stability. Our findings contribute to the ongoing development of AI systems in autonomous driving and related control tasks.
Related papers
- Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.
The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.
A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
Reinforcement Learning (RL) has emerged as a transformative approach in the domains of automation and robotics.
This study develops and trains an RL agent to navigate a racing environment solely using feedforward raw lidar and velocity data.
The agent's performance is then experimentally evaluated in a real-world racing scenario.
arXiv Detail & Related papers (2023-09-01T07:03:05Z) - Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Deep Reinforcement Learning for Autonomous Driving: A Survey [0.3694429692322631]
This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks.
It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms.
The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
arXiv Detail & Related papers (2020-02-02T18:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.