論文の概要: Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners
- arxiv url: http://arxiv.org/abs/2402.17723v1
- Date: Tue, 27 Feb 2024 17:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 15:04:06.941400
- Title: Seeing and Hearing: Open-domain Visual-Audio Generation with Diffusion
Latent Aligners
- Title(参考訳): 視線と聴覚:拡散潜時アライナーを用いたオープンドメインビジュアルオーディオ生成
- Authors: Yazhou Xing, Yingqing He, Zeyue Tian, Xintao Wang, Qifeng Chen
- Abstract要約: ビデオとオーディオのコンテンツ制作は、映画産業とプロのユーザーにとって重要な技術である。
既存の拡散に基づく手法は、ビデオと音声を別々に生成する。
本研究では,このギャップを埋めることを目的として,クロス・ビジュアル・オーディオとジョイント・ヴィジュアル・オーディオ生成のためのフレームワークを慎重に設計した。
- 参考スコア(独自算出の注目度): 69.70590867769408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video and audio content creation serves as the core technique for the movie
industry and professional users. Recently, existing diffusion-based methods
tackle video and audio generation separately, which hinders the technique
transfer from academia to industry. In this work, we aim at filling the gap,
with a carefully designed optimization-based framework for cross-visual-audio
and joint-visual-audio generation. We observe the powerful generation ability
of off-the-shelf video or audio generation models. Thus, instead of training
the giant models from scratch, we propose to bridge the existing strong models
with a shared latent representation space. Specifically, we propose a
multimodality latent aligner with the pre-trained ImageBind model. Our latent
aligner shares a similar core as the classifier guidance that guides the
diffusion denoising process during inference time. Through carefully designed
optimization strategy and loss functions, we show the superior performance of
our method on joint video-audio generation, visual-steered audio generation,
and audio-steered visual generation tasks. The project website can be found at
https://yzxing87.github.io/Seeing-and-Hearing/
- Abstract(参考訳): ビデオおよびオーディオコンテンツ作成は、映画産業とプロのユーザーにとって重要な技術である。
近年,既存の拡散法はビデオと音声を別々に生成し,学術から産業への移転を妨げている。
本研究では,クロスビジュアルオーディオとジョイントビジュアルオーディオ生成を念入りに設計した最適化ベースのフレームワークを用いて,このギャップを埋めることを目的とする。
市販ビデオやオーディオ生成モデルの強力な生成能力を観察した。
したがって、巨大モデルをゼロからトレーニングする代わりに、既存の強力なモデルを共有潜在表現空間でブリッジすることを提案する。
具体的には,事前学習したimagebindモデルを用いたマルチモダリティ潜在ライナーを提案する。
我々の潜在整合器は、推論時間における拡散遅延過程を導く分類器ガイダンスと同様のコアを共有している。
最適化戦略と損失関数を慎重に設計することにより,映像音声生成,視聴覚音声生成,視聴覚生成タスクにおいて,提案手法の優れた性能を示す。
プロジェクトのWebサイトはhttps://yzxing87.github.io/Seeing-and-Hearing/にある。
関連論文リスト
- From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
本稿では,視覚表現学習と視覚音声生成のギャップを埋める新しいフレームワークであるVision to Audio and Beyond(VAB)を紹介する。
VABは、事前訓練されたオーディオトークンライザと画像エンコーダを使用して、それぞれ音声トークンと視覚的特徴を取得する。
実験では,ビデオから高品質な音声を生成するためのVABの効率と,セマンティック・オーディオ・視覚的特徴を習得する能力について紹介した。
論文 参考訳(メタデータ) (2024-09-27T20:26:34Z) - Video-to-Audio Generation with Hidden Alignment [27.11625918406991]
我々は、視覚エンコーダ、補助埋め込み、データ拡張技術に焦点をあてて、ビデオ・オーディオ生成パラダイムに関する洞察を提供する。
提案モデルでは,最先端のビデオ・オーディオ生成機能を示す。
論文 参考訳(メタデータ) (2024-07-10T08:40:39Z) - Read, Watch and Scream! Sound Generation from Text and Video [23.990569918960315]
本稿では,ReWaSと呼ばれる新しいビデオ・テキスト・音声生成手法を提案する。
本手法は,ユーザのプロンプトからキーコンテンツキューを受信しながら,ビデオから音声の構造情報を推定する。
音声の生成成分を分離することにより、ユーザが好みに応じて、エネルギー、周囲環境、および一次音源を自由に調整できる、より柔軟なシステムとなる。
論文 参考訳(メタデータ) (2024-07-08T01:59:17Z) - Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization [70.13218512896032]
テキストプロンプトから音声を生成することは、音楽や映画産業におけるそのようなプロセスの重要な側面である。
我々の仮説は、これらのオーディオ生成の側面が、限られたデータの存在下でのオーディオ生成性能をどのように改善するかに焦点を当てている。
我々は、各プロンプトが勝者の音声出力と、拡散モデルが学習するための敗者音声出力を持つ選好データセットを合成的に作成する。
論文 参考訳(メタデータ) (2024-04-15T17:31:22Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Align, Adapt and Inject: Sound-guided Unified Image Generation [50.34667929051005]
本稿では,音声誘導画像生成,編集,スタイリングのための統合フレームワーク「アライン,アダプティブ,インジェクション(AAI)」を提案する。
本手法は,既存のテキスト・ツー・イメージ(T2I)モデルを用いて,入力音を通常の単語のように音声トークンに適応させる。
提案するAAIは、他のテキストや音声誘導方式よりも優れています。
論文 参考訳(メタデータ) (2023-06-20T12:50:49Z) - Sound to Visual Scene Generation by Audio-to-Visual Latent Alignment [22.912401512161132]
我々は、各モデルコンポーネントの学習手順をスケジューリングして、オーディオ・視覚的モダリティを関連付けるモデルの設計を行う。
入力音声を視覚的特徴に変換し,事前学習した生成器を用いて画像を生成する。
VEGAS と VGGSound のデータセットは,従来の手法よりもかなりよい結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T16:01:50Z) - Sound-Guided Semantic Video Generation [15.225598817462478]
本稿では,マルチモーダル(音像文)埋め込み空間を活用することで,リアルな映像を生成するフレームワークを提案する。
音はシーンの時間的文脈を提供するので、我々のフレームワークは音と意味的に整合したビデオを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-20T07:33:10Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
生音声波形から自己教師付き音声表現を学習する手法を提案する。
音声のみの自己スーパービジョン(情報的音響属性の予測)と視覚的自己スーパービジョン(音声から発話顔を生成する)を組み合わせることで生音声エンコーダを訓練する。
本研究は,音声表現学習におけるマルチモーダル・セルフ・スーパービジョンの可能性を示すものである。
論文 参考訳(メタデータ) (2020-07-08T14:07:06Z) - Curriculum Audiovisual Learning [113.20920928789867]
本稿では,ソフトクラスタリングモジュールを音響・視覚コンテンツ検出装置として導入するフレキシブル・オーディオビジュアル・モデルを提案する。
音声視覚学習の難しさを軽減するため,簡単なシーンから複雑なシーンまでモデルを訓練する新しい学習戦略を提案する。
本手法は,外的視覚的監督に言及することなく,音の分離において同等の性能を示す。
論文 参考訳(メタデータ) (2020-01-26T07:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。