MedContext: Learning Contextual Cues for Efficient Volumetric Medical Segmentation
- URL: http://arxiv.org/abs/2402.17725v2
- Date: Tue, 16 Jul 2024 19:24:41 GMT
- Title: MedContext: Learning Contextual Cues for Efficient Volumetric Medical Segmentation
- Authors: Hanan Gani, Muzammal Naseer, Fahad Khan, Salman Khan,
- Abstract summary: We propose a universal training framework called MedContext for 3D medical segmentation.
Our approach effectively learns self supervised contextual cues jointly with the supervised voxel segmentation task.
The effectiveness of MedContext is validated across multiple 3D medical datasets and four state-of-the-art model architectures.
- Score: 25.74088298769155
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Volumetric medical segmentation is a critical component of 3D medical image analysis that delineates different semantic regions. Deep neural networks have significantly improved volumetric medical segmentation, but they generally require large-scale annotated data to achieve better performance, which can be expensive and prohibitive to obtain. To address this limitation, existing works typically perform transfer learning or design dedicated pretraining-finetuning stages to learn representative features. However, the mismatch between the source and target domain can make it challenging to learn optimal representation for volumetric data, while the multi-stage training demands higher compute as well as careful selection of stage-specific design choices. In contrast, we propose a universal training framework called MedContext that is architecture-agnostic and can be incorporated into any existing training framework for 3D medical segmentation. Our approach effectively learns self supervised contextual cues jointly with the supervised voxel segmentation task without requiring large-scale annotated volumetric medical data or dedicated pretraining-finetuning stages. The proposed approach induces contextual knowledge in the network by learning to reconstruct the missing organ or parts of an organ in the output segmentation space. The effectiveness of MedContext is validated across multiple 3D medical datasets and four state-of-the-art model architectures. Our approach demonstrates consistent gains in segmentation performance across datasets and different architectures even in few-shot data scenarios. Our code and pretrained models are available at https://github.com/hananshafi/MedContext
Related papers
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
We propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt.
We evaluate our model on two public datasets for colon and pancreas tumor segmentations.
arXiv Detail & Related papers (2023-10-30T16:49:03Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
We propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation.
Our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner.
Our experiments demonstrate that MORSE can work well with different medical segmentation backbones.
arXiv Detail & Related papers (2023-04-06T16:44:03Z) - MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation [47.428577772279176]
We present MetaMedSeg, a gradient-based meta-learning algorithm that redefines the meta-learning task for the volumetric medical data.
In the experiments, we present an evaluation of the medical decathlon dataset by extracting 2D slices from CT and MRI volumes of different organs.
Our proposed volumetric task definition leads to up to 30% improvement in terms of IoU compared to related baselines.
arXiv Detail & Related papers (2021-09-18T11:13:45Z) - 3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone
Segmentation in Upper Bodies [1.2023648183416153]
This paper discusses the intricacies of training a 3D segmentation network in a many-label setting.
We show necessary modifications in network architecture, loss function, and data augmentation.
As a result, we demonstrate the robustness of our method by automatically segmenting over one hundred distinct bones simultaneously in an end-to-end learnt fashion from a CT-scan.
arXiv Detail & Related papers (2020-10-14T12:54:15Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
Unlabeled data is much easier to acquire than well-annotated data.
We propose uncertainty-aware multi-view co-training for medical image segmentation.
Our framework is capable of efficiently utilizing unlabeled data for better performance.
arXiv Detail & Related papers (2020-06-28T22:04:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.