論文の概要: Towards Fairness-Aware Adversarial Learning
- arxiv url: http://arxiv.org/abs/2402.17729v1
- Date: Tue, 27 Feb 2024 18:01:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 15:05:29.667424
- Title: Towards Fairness-Aware Adversarial Learning
- Title(参考訳): フェアネス・アウェア・アドバーサル学習に向けて
- Authors: Yanghao Zhang, Tianle Zhang, Ronghui Mu, Xiaowei Huang and Wenjie Ruan
- Abstract要約: フェアネス・アウェア・アドバーサリアル・ラーニング(FAAL)という新しい学習パラダイムを提案する。
提案手法は,異なるカテゴリ間で最悪の分布を求めることを目的としており,高い確率で上界性能が得られることを保証している。
特にFAALは、不公平なロバストモデルを2つのエポックで公平に調整できるが、全体的なクリーンで堅牢なアキュラシーを損なうことはない。
- 参考スコア(独自算出の注目度): 14.947647219053037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although adversarial training (AT) has proven effective in enhancing the
model's robustness, the recently revealed issue of fairness in robustness has
not been well addressed, i.e. the robust accuracy varies significantly among
different categories. In this paper, instead of uniformly evaluating the
model's average class performance, we delve into the issue of robust fairness,
by considering the worst-case distribution across various classes. We propose a
novel learning paradigm, named Fairness-Aware Adversarial Learning (FAAL). As a
generalization of conventional AT, we re-define the problem of adversarial
training as a min-max-max framework, to ensure both robustness and fairness of
the trained model. Specifically, by taking advantage of distributional robust
optimization, our method aims to find the worst distribution among different
categories, and the solution is guaranteed to obtain the upper bound
performance with high probability. In particular, FAAL can fine-tune an unfair
robust model to be fair within only two epochs, without compromising the
overall clean and robust accuracies. Extensive experiments on various image
datasets validate the superior performance and efficiency of the proposed FAAL
compared to other state-of-the-art methods.
- Abstract(参考訳): 敵対的トレーニング(AT)はモデルの堅牢性を高めるのに有効であることが証明されているが、最近明らかになった頑健性の公正性の問題には対処されていない。
本稿では,モデルの平均クラス性能を均一に評価する代わりに,各クラスにおける最悪ケース分布を考慮し,ロバストフェアネスの問題を検討する。
本研究では,Fairness-Aware Adversarial Learning (FAAL)という新しい学習パラダイムを提案する。
従来のatの一般化として,min-max-maxフレームワークとしての敵訓練の問題を再定義し,トレーニングモデルの堅牢性と公平性を確保する。
具体的には,分散ロバスト最適化の利点を生かして,異なるカテゴリ間の最悪の分布を見出すことを目標とし,高い確率で上限性能を得ることを保証した。
特にFAALは、不公平なロバストモデルを2つのエポックで公平に調整できるが、全体的なクリーンで堅牢なアキュラシーを損なうことはない。
様々な画像データセットに対する広範囲な実験により、提案したFAALの性能と効率が、他の最先端手法と比較して優れていることが検証された。
関連論文リスト
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - DAFA: Distance-Aware Fair Adversarial Training [34.94780532071229]
敵対的攻撃の下では、最悪のクラスからのサンプルに対するモデルの予測の大半は、最悪のクラスと同様のクラスに偏っている。
本稿では,クラス間の類似性を考慮し,頑健な公正性に対処するDAFA手法を提案する。
論文 参考訳(メタデータ) (2024-01-23T07:15:47Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - FITNESS: A Causal De-correlation Approach for Mitigating Bias in Machine
Learning Software [6.4073906779537095]
バイアスデータセットは不公平で潜在的に有害な結果をもたらす可能性がある。
本稿では,感性特徴とラベルの因果関係を関連づけたバイアス緩和手法を提案する。
我々のキーとなる考え方は、因果関係の観点からそのような効果を非相関化することで、モデルが繊細な特徴に基づいて予測することを避けることである。
論文 参考訳(メタデータ) (2023-05-23T06:24:43Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Improving Robust Fairness via Balance Adversarial Training [51.67643171193376]
対人訓練 (AT) 法は, 対人攻撃に対して有効であるが, 異なるクラス間での精度と頑健さの相違が激しい。
本稿では,頑健な公正性問題に対処するために,BAT(Adversarial Training)を提案する。
論文 参考訳(メタデータ) (2022-09-15T14:44:48Z) - DAFT: Distilling Adversarially Fine-tuned Models for Better OOD
Generalization [35.53270942633211]
我々は,OOD一般化の課題について考察する。その目的は,トレーニング分布と異なるテスト分布でよく機能するモデルをトレーニングすることである。
我々は,多数のリッチな特徴を逆向きに頑健に組み合わせることで,OODの堅牢性を実現するという直感に基づく新しい手法,DAFTを提案する。
我々は、DomainBedフレームワークの標準ベンチマーク上でDAFTを評価し、DAFTが現在の最先端OOD一般化法よりも大幅に改善できることを実証した。
論文 参考訳(メタデータ) (2022-08-19T03:48:17Z) - Probabilistically Robust Learning: Balancing Average- and Worst-case
Performance [105.87195436925722]
我々は、正確で不安定な平均ケースと頑健で保守的な最悪のケースのギャップを埋める、堅牢性確率というフレームワークを提案する。
理論的には、このフレームワークはパフォーマンスと最悪のケースと平均ケース学習のサンプル複雑さの間のトレードオフを克服する。
論文 参考訳(メタデータ) (2022-02-02T17:01:38Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。