論文の概要: REPrune: Channel Pruning via Kernel Representative Selection
- arxiv url: http://arxiv.org/abs/2402.17862v3
- Date: Fri, 8 Mar 2024 07:03:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 22:24:01.496794
- Title: REPrune: Channel Pruning via Kernel Representative Selection
- Title(参考訳): RePrune:カーネル代表選考によるチャンネルのプルーニング
- Authors: Mincheol Park, Dongjin Kim, Cheonjun Park, Yuna Park, Gyeong Eun Gong,
Won Woo Ro, Suhyun Kim
- Abstract要約: 本稿では,カーネルプルーニングをエミュレートする新しいチャネルプルーニング手法であるREPruneを提案する。
REPruneは、既存の方法よりもコンピュータビジョンタスクにおいて優れており、アクセラレーション比と性能保持のバランスを効果的に達成している。
- 参考スコア(独自算出の注目度): 11.748741942253814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Channel pruning is widely accepted to accelerate modern convolutional neural
networks (CNNs). The resulting pruned model benefits from its immediate
deployment on general-purpose software and hardware resources. However, its
large pruning granularity, specifically at the unit of a convolution filter,
often leads to undesirable accuracy drops due to the inflexibility of deciding
how and where to introduce sparsity to the CNNs. In this paper, we propose
REPrune, a novel channel pruning technique that emulates kernel pruning, fully
exploiting the finer but structured granularity. REPrune identifies similar
kernels within each channel using agglomerative clustering. Then, it selects
filters that maximize the incorporation of kernel representatives while
optimizing the maximum cluster coverage problem. By integrating with a
simultaneous training-pruning paradigm, REPrune promotes efficient, progressive
pruning throughout training CNNs, avoiding the conventional
train-prune-finetune sequence. Experimental results highlight that REPrune
performs better in computer vision tasks than existing methods, effectively
achieving a balance between acceleration ratio and performance retention.
- Abstract(参考訳): チャネルプルーニングは現代の畳み込みニューラルネットワーク(cnns)を加速するために広く受け入れられている。
結果として得られたprunedモデルは、汎用ソフトウェアとハードウェアリソースへの即時デプロイから恩恵を受ける。
しかし、特に畳み込みフィルタの単位において、その大きな粉砕粒度は、cnnにスパース性を導入する方法や場所を決定する柔軟性がないため、望ましくない精度低下に繋がることが多い。
本稿では,カーネルプルーニングをエミュレートする新しいチャネルプルーニング手法であるREPruneを提案する。
repruneは凝集クラスタリングを使用して各チャネル内の類似のカーネルを識別する。
そして、最大クラスタカバレッジ問題を最適化しつつ、カーネル代表者の取り込みを最大化するフィルタを選択する。
同時にトレーニング・プルーニングのパラダイムを統合することで、REPruneはCNNのトレーニング全体を通じて効率的でプログレッシブなプルーニングを促進する。
実験結果から、REPruneは既存の手法よりもコンピュータビジョンタスクにおいて優れており、加速比と性能保持のバランスを効果的に達成できることがわかった。
関連論文リスト
- RL-Pruner: Structured Pruning Using Reinforcement Learning for CNN Compression and Acceleration [0.0]
RL-Prunerを提案する。このRL-Prunerは、強化学習を用いて最適プルーニング分布を学習する。
RL-Prunerは、モデル固有のプルーニング実装を必要とせずに、入力モデル内のフィルタ間の依存関係を自動的に抽出し、プルーニングを実行する。
論文 参考訳(メタデータ) (2024-11-10T13:35:10Z) - DRIVE: Dual Gradient-Based Rapid Iterative Pruning [2.209921757303168]
現代のディープニューラルネットワーク(DNN)は、数百万のパラメータで構成され、トレーニングと推論中にハイパフォーマンスコンピューティングを必要とする。
学習後推論の合理化に焦点をあてた従来の刈り込み手法は, 訓練前の刈り込みによって早期に疎水性を活用する試みが近年行われている。
創発に固有のランダム性に対処するために,初期エポックに対する濃密なトレーニングを活用するDual Gradient-Based Rapid Iterative Pruning (DRIVE)を提案する。
論文 参考訳(メタデータ) (2024-04-01T20:44:28Z) - Trainability Preserving Neural Structured Pruning [64.65659982877891]
本稿では,正規化型構造化プルーニング法であるTPP(Traiability Preserving pruning)を提案する。
TPPは線形ネットワーク上での地中動力学的等尺性回復法と競合する。
多くのトップパフォーマンスのフィルタプルーニング手法と比較して、優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-07-25T21:15:47Z) - Interspace Pruning: Using Adaptive Filter Representations to Improve
Training of Sparse CNNs [69.3939291118954]
非構造プルーニングは畳み込みニューラルネットワーク(CNN)のメモリフットプリントを削減するのに適している
標準非構造化プルーニング(SP)はフィルタ要素をゼロにすることでCNNのメモリフットプリントを削減する。
既存のプルーニング法を改善する汎用ツールであるインタースペースプルーニング(IP)を導入する。
論文 参考訳(メタデータ) (2022-03-15T11:50:45Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
本稿では,CATRO (Class-Aware Trace Ratio Optimization) を用いた新しいチャネルプルーニング手法を提案する。
CATROは、他の最先端チャネルプルーニングアルゴリズムと同等の精度で、同様のコストまたは低コストで高い精度を達成できることを示す。
CATROは、クラス認識の特性のため、様々な分類サブタスクに適応的に効率の良いネットワークを創り出すのに適している。
論文 参考訳(メタデータ) (2021-10-21T06:26:31Z) - GDP: Stabilized Neural Network Pruning via Gates with Differentiable
Polarization [84.57695474130273]
ゲートベースまたは重要度に基づくプルーニング手法は、重要度が最小のチャネルを削除することを目的としている。
GDPは、各チャネルのオン・アンド・オフを制御するために、ベルやホイッスルのない畳み込み層の前に接続することができる。
CIFAR-10とImageNetデータセットを用いて行った実験は、提案したGDPが最先端のパフォーマンスを達成することを示している。
論文 参考訳(メタデータ) (2021-09-06T03:17:10Z) - BWCP: Probabilistic Learning-to-Prune Channels for ConvNets via Batch
Whitening [63.081808698068365]
本稿では,畳み込みニューラルネットワーク(cnns)を高速化する確率的チャネルプルーニング手法を提案する。
以前は、訓練中の重要でないチャンネルを決定論的な方法でゼロにすることが多く、CNNの学習能力が低下し、最適なパフォーマンスが得られます。
本研究では, バッチホワイトニングチャネルプルーニング (BWCP) と呼ばれる確率ベースのプルーニングアルゴリズムを開発し, チャネルの活性化の確率をモデル化することにより, 重要でないチャネルを自動破棄する。
論文 参考訳(メタデータ) (2021-05-13T17:00:05Z) - Towards Optimal Filter Pruning with Balanced Performance and Pruning
Speed [17.115185960327665]
本稿では,性能とプルーニング速度の両立のために,バランスの取れたフィルタプルーニング法を提案する。
提案手法は, 約層幅の最適プルーニング速度を予め設定した損失変動で再現できる。
提案手法は共通アーキテクチャに適用可能であり,最終微調整以外の追加訓練は行わない。
論文 参考訳(メタデータ) (2020-10-14T06:17:09Z) - Dependency Aware Filter Pruning [74.69495455411987]
重要でないフィルタを割ることは、推論コストを軽減するための効率的な方法である。
以前の作業は、その重み基準やそれに対応するバッチノームスケーリング要因に従ってフィルタをプルークする。
所望の空間性を達成するために,空間性誘導正規化を動的に制御する機構を提案する。
論文 参考訳(メタデータ) (2020-05-06T07:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。