論文の概要: Using Graph Neural Networks to Predict Local Culture
- arxiv url: http://arxiv.org/abs/2402.17905v1
- Date: Tue, 27 Feb 2024 21:43:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 17:06:20.514284
- Title: Using Graph Neural Networks to Predict Local Culture
- Title(参考訳): グラフニューラルネットワークによる地域文化の予測
- Authors: Thiago H Silva and Daniel Silver
- Abstract要約: 本研究では, 周辺地域の内部特性に関する複数の情報ソースを結合し, 評価するグラフニューラルネットワーク(GNN)手法を提案する。
Yelpからパブリックな大規模データセットを探索することにより、近隣属性の予測における構造的連結性を考慮したアプローチの可能性を示す。
- 参考スコア(独自算出の注目度): 3.056211477364962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban research has long recognized that neighbourhoods are dynamic and
relational. However, lack of data, methodologies, and computer processing power
have hampered a formal quantitative examination of neighbourhood relational
dynamics. To make progress on this issue, this study proposes a graph neural
network (GNN) approach that permits combining and evaluating multiple sources
of information about internal characteristics of neighbourhoods, their past
characteristics, and flows of groups among them, potentially providing greater
expressive power in predictive models. By exploring a public large-scale
dataset from Yelp, we show the potential of our approach for considering
structural connectedness in predicting neighbourhood attributes, specifically
to predict local culture. Results are promising from a substantive and
methodologically point of view. Substantively, we find that either local area
information (e.g. area demographics) or group profiles (tastes of Yelp
reviewers) give the best results in predicting local culture, and they are
nearly equivalent in all studied cases. Methodologically, exploring group
profiles could be a helpful alternative where finding local information for
specific areas is challenging, since they can be extracted automatically from
many forms of online data. Thus, our approach could empower researchers and
policy-makers to use a range of data sources when other local area information
is lacking.
- Abstract(参考訳): 都市研究は長い間、近隣は動的で関係性が高いと認識してきた。
しかし、データ、方法論、コンピュータ処理能力の欠如は、近隣関係ダイナミクスの形式的定量的な検証を妨げている。
本研究は,gnn(graph neural network)を用いて,近隣住民の内部特性,過去の特徴,グループ間の流れに関する複数の情報ソースを組み合わせることで,予測モデルにおける表現力を高めることが可能な手法を提案する。
yelpの公開した大規模データセットを探索することにより,近隣属性の予測,特に地域文化の予測において,構造的接続性を考慮したアプローチの可能性を示す。
結果は、従属的かつ方法論的な観点から有望である。
統計的には、地域情報(地域人口統計など)またはグループプロファイル(yelpレビュアーの味)が地域文化の予測に最適な結果をもたらし、すべての研究ケースでほぼ同等であることがわかった。
グループプロファイルを探索することは、様々なオンラインデータから自動的に抽出できるため、特定の分野のローカル情報を見つけるのが困難である。
これにより、研究者や政策立案者は、他の地域情報が不足している場合に、さまざまなデータソースの使用を奨励することができる。
関連論文リスト
- A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - City Foundation Models for Learning General Purpose Representations from OpenStreetMap [16.09047066527081]
本稿では,都市のような選択された地理的関心領域における基礎モデルをトレーニングするためのフレームワークであるCityFMを紹介する。
CityFMはOpenStreetMapからのオープンデータにのみ依存し、異なるタイプのエンティティ、空間、視覚、およびテキスト情報のマルチモーダル表現を生成する。
すべての実験において、CityFMはベースラインに匹敵する、あるいは同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-01T05:55:30Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
オーバーヘッド画像は、コミュニティ情報が不足しているギャップを埋めるのに役立つ。
機械学習とコンピュータビジョンの最近の進歩により、画像データのパターンから素早く特徴を抽出し、検出することが可能になった。
本研究では, 人口密度, 中央値世帯所得, 教育達成率の2つのアプローチ, 教師付き畳み込みニューラルネットワークと半教師付きクラスタリングについて検討する。
論文 参考訳(メタデータ) (2023-09-28T19:30:26Z) - Trust your Good Friends: Source-free Domain Adaptation by Reciprocal
Neighborhood Clustering [50.46892302138662]
我々は、ソースデータがない場合に、ソース事前学習されたモデルをターゲット領域に適応させる、ソースフリー領域適応問題に対処する。
提案手法は,ソースドメイン分類器と一致しない可能性のあるターゲットデータが,依然として明確なクラスタを形成しているという観測に基づいている。
本研究では, この地域構造を, 地域住民, 相互隣人, 及び拡張近所を考慮し, 効率的に把握できることを実証する。
論文 参考訳(メタデータ) (2023-09-01T15:31:18Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI)レコメンデーションは、ロケーションベースのeコマースにおいて重要なコンポーネントとなっている。
自己教師付きグラフ強化POIレコメンデーション(S2GRec)を次のPOIレコメンデーションのために提案する。
特に,グローバル・トランジション・グラフと局所軌道グラフの両方からの協調的な信号を組み込むために,グラフ強化セルフアテンテート・レイヤを考案した。
論文 参考訳(メタデータ) (2022-10-22T17:29:34Z) - TensorAnalyzer: Identification of Urban Patterns in Big Cities using
Non-Negative Tensor Factorization [8.881421521529198]
本稿では,テンソル分解に基づく複数のデータソースから最も関連性の高い都市パターンを検出するための新しい手法を提案する。
提案手法の有効性と有用性を検証した汎用フレームワークAnalyzerを開発した。
論文 参考訳(メタデータ) (2022-10-06T01:04:02Z) - Global-Local Context Network for Person Search [125.51080862575326]
パーソンサーチは、自然に切り刻まれた画像からクエリーを共同でローカライズし、識別することを目的としている。
我々は,対象人物を取り巻く環境情報を多様かつ局所的に利用し,それぞれがシーンとグループコンテキストを参照する。
本稿では,機能強化を目的としたグローバル・ローカル・コンテキスト・ネットワーク(GLCNet)を提案する。
論文 参考訳(メタデータ) (2021-12-05T07:38:53Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Learning Neighborhood Representation from Multi-Modal Multi-Graph:
Image, Text, Mobility Graph and Beyond [20.014906526266795]
本稿では,マルチモーダルジオタグ入力をノードまたはエッジの特徴として統合する新しい手法を提案する。
具体的には、ストリートビュー画像とpoi特徴を用いて、近傍(ノード)を特徴付け、人間移動を用いて近隣(方向エッジ)間の関係を特徴付ける。
トレーニングした埋め込みは、ユニモーダルデータのみを地域入力として使用するものよりも優れています。
論文 参考訳(メタデータ) (2021-05-06T07:44:05Z) - Domain-Adversarial Training of Self-Attention Based Networks for Land
Cover Classification using Multi-temporal Sentinel-2 Satellite Imagery [0.0]
ほとんどの実用的なアプリケーションはラベル付きデータには依存せず、この分野では調査は時間のかかるソリューションである。
本稿では,異なる地理的領域間のドメイン不一致を橋渡しする深層ニューラルネットワークの対比訓練について検討する。
論文 参考訳(メタデータ) (2021-04-01T15:45:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。