論文の概要: Exploring Advanced Methodologies in Security Evaluation for LLMs
- arxiv url: http://arxiv.org/abs/2402.17970v2
- Date: Thu, 29 Feb 2024 03:17:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:59:15.594841
- Title: Exploring Advanced Methodologies in Security Evaluation for LLMs
- Title(参考訳): LLMのセキュリティ評価における高度な手法の探求
- Authors: Jun Huang, Jiawei Zhang, Qi Wang, Weihong Han, Yanchun Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、初期のより単純な言語モデルの進化を象徴する。
複雑な言語パターンを処理し、一貫性のあるテキスト、画像、オーディオ、ビデオを生成する能力が強化されている。
LLMの急速な拡大は、学術コミュニティ内のセキュリティと倫理的懸念を提起している。
- 参考スコア(独自算出の注目度): 16.753146059652877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) represent an advanced evolution of earlier, simpler language models. They boast enhanced abilities to handle complex language patterns and generate coherent text, images, audios, and videos. Furthermore, they can be fine-tuned for specific tasks. This versatility has led to the proliferation and extensive use of numerous commercialized large models. However, the rapid expansion of LLMs has raised security and ethical concerns within the academic community. This emphasizes the need for ongoing research into security evaluation during their development and deployment. Over the past few years, a substantial body of research has been dedicated to the security evaluation of large-scale models. This article an in-depth review of the most recent advancements in this field, providing a comprehensive analysis of commonly used evaluation metrics, advanced evaluation frameworks, and the routine evaluation processes for LLMs. Furthermore, we also discuss the future directions for advancing the security evaluation of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、初期のより単純な言語モデルの進化を象徴する。
複雑な言語パターンを処理し、一貫性のあるテキスト、画像、オーディオ、ビデオを生成する能力が強化されている。
さらに、特定のタスクのために微調整することもできる。
この汎用性は、多くの商業化された大型モデルの普及と広範囲な使用につながった。
しかし、LLMの急速な拡大は、学術コミュニティ内のセキュリティと倫理的懸念を提起している。
これは、開発およびデプロイメント中のセキュリティ評価に関する継続的な研究の必要性を強調している。
過去数年間、大規模なモデルのセキュリティ評価にかなりの研究が費やされてきた。
本稿では、この分野での最近の進歩を詳細に概観し、一般的に使われている評価指標、高度な評価フレームワーク、およびLCMのルーチン評価プロセスの総合的な分析を行う。
また,LLMのセキュリティ評価を進めるための今後の方向性についても論じる。
関連論文リスト
- A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - CPSDBench: A Large Language Model Evaluation Benchmark and Baseline for Chinese Public Security Domain [21.825274494004983]
本研究は,中国の公安ドメインであるCPSDbenchに合わせた,特別な評価ベンチマークを構築することを目的とする。
CPSDbenchは、現実世界のシナリオから収集されたパブリックセキュリティに関連するデータセットを統合する。
本研究では,公共の安全に関わるタスクの実行において,LLMの有効性をより正確に定量化するための,革新的な評価指標を提案する。
論文 参考訳(メタデータ) (2024-02-11T15:56:03Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - Evaluating Large Language Models: A Comprehensive Survey [41.64914110226901]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な能力を示している。
プライベートなデータ漏洩に悩まされたり、不適切で有害なコンテンツや誤解を招く可能性がある。
LLMのキャパシティを効果的に活用し、その安全で有益な開発を確保するためには、厳密で包括的な評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-10-30T17:00:52Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。