Exploring Advanced Methodologies in Security Evaluation for LLMs
- URL: http://arxiv.org/abs/2402.17970v2
- Date: Thu, 29 Feb 2024 03:17:45 GMT
- Title: Exploring Advanced Methodologies in Security Evaluation for LLMs
- Authors: Jun Huang, Jiawei Zhang, Qi Wang, Weihong Han, Yanchun Zhang,
- Abstract summary: Large Language Models (LLMs) represent an advanced evolution of earlier, simpler language models.
They boast enhanced abilities to handle complex language patterns and generate coherent text, images, audios, and videos.
Rapid expansion of LLMs has raised security and ethical concerns within the academic community.
- Score: 16.753146059652877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) represent an advanced evolution of earlier, simpler language models. They boast enhanced abilities to handle complex language patterns and generate coherent text, images, audios, and videos. Furthermore, they can be fine-tuned for specific tasks. This versatility has led to the proliferation and extensive use of numerous commercialized large models. However, the rapid expansion of LLMs has raised security and ethical concerns within the academic community. This emphasizes the need for ongoing research into security evaluation during their development and deployment. Over the past few years, a substantial body of research has been dedicated to the security evaluation of large-scale models. This article an in-depth review of the most recent advancements in this field, providing a comprehensive analysis of commonly used evaluation metrics, advanced evaluation frameworks, and the routine evaluation processes for LLMs. Furthermore, we also discuss the future directions for advancing the security evaluation of LLMs.
Related papers
- A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
Multimodal Large Language Models (MLLMs) have brought substantial advancements in artificial intelligence.
This survey systematically reviews 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application.
arXiv Detail & Related papers (2024-09-21T15:22:26Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERT is a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy.
It aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models.
arXiv Detail & Related papers (2024-04-06T15:01:47Z) - CPSDBench: A Large Language Model Evaluation Benchmark and Baseline for Chinese Public Security Domain [21.825274494004983]
This study aims to construct a specialized evaluation benchmark tailored to the Chinese public security domain--CPSDbench.
CPSDbench integrates datasets related to public security collected from real-world scenarios.
This study introduces a set of innovative evaluation metrics designed to more precisely quantify the efficacy of LLMs in executing tasks related to public security.
arXiv Detail & Related papers (2024-02-11T15:56:03Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
We propose ScaleEval, an agent-debate-assisted meta-evaluation framework.
We release the code for our framework, which is publicly available on GitHub.
arXiv Detail & Related papers (2024-01-30T07:03:32Z) - Evaluating Large Language Models: A Comprehensive Survey [41.64914110226901]
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks.
They could suffer from private data leaks or yield inappropriate, harmful, or misleading content.
To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation.
arXiv Detail & Related papers (2023-10-30T17:00:52Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.