3MVRD: Multimodal Multi-task Multi-teacher Visually-Rich Form Document Understanding
- URL: http://arxiv.org/abs/2402.17983v3
- Date: Fri, 26 Jul 2024 06:46:19 GMT
- Title: 3MVRD: Multimodal Multi-task Multi-teacher Visually-Rich Form Document Understanding
- Authors: Yihao Ding, Lorenzo Vaiani, Caren Han, Jean Lee, Paolo Garza, Josiah Poon, Luca Cagliero,
- Abstract summary: The model is designed to leverage insights from both fine-grained and coarse-grained levels by facilitating a nuanced correlation between token and entity representations.
We introduce new inter-grained and cross-grained loss functions to refine diverse multi-teacher knowledge distillation transfer process.
Through a comprehensive evaluation across publicly available form document understanding datasets, our proposed model consistently outperforms existing baselines.
- Score: 13.19218501758693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a groundbreaking multimodal, multi-task, multi-teacher joint-grained knowledge distillation model for visually-rich form document understanding. The model is designed to leverage insights from both fine-grained and coarse-grained levels by facilitating a nuanced correlation between token and entity representations, addressing the complexities inherent in form documents. Additionally, we introduce new inter-grained and cross-grained loss functions to further refine diverse multi-teacher knowledge distillation transfer process, presenting distribution gaps and a harmonised understanding of form documents. Through a comprehensive evaluation across publicly available form document understanding datasets, our proposed model consistently outperforms existing baselines, showcasing its efficacy in handling the intricate structures and content of visually complex form documents.
Related papers
- Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction [23.47150047875133]
Document parsing is essential for converting unstructured and semi-structured documents into machine-readable data.
Document parsing plays an indispensable role in both knowledge base construction and training data generation.
This paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts.
arXiv Detail & Related papers (2024-10-28T16:11:35Z) - Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking [0.283600654802951]
We present a summarization model designed to generate claim-specific summaries useful for fact-checking from multimodal datasets.
We introduce a dynamic perceiver-based model that can handle inputs from multiple modalities of arbitrary lengths.
Our approach outperforms the SOTA approach by 4.6% in the claim verification task on the MOCHEG dataset.
arXiv Detail & Related papers (2024-07-18T01:33:20Z) - LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding [0.0]
This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents.
Existing methods have been developed to enhance document comprehension by incorporating pre-training awareness of images, text, and layout structure.
Our experiments demonstrate improvement over the baseline model in various document analysis tasks.
arXiv Detail & Related papers (2024-03-21T09:25:24Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - Towards Flexible Multi-modal Document Models [27.955214767628107]
In this work, we attempt at building a holistic model that can jointly solve many different design tasks.
Our model, which we denote by FlexDM, treats vector graphic documents as a harmonious set of multi-modal elements.
Experimental results corroborate that our single FlexDM is able to successfully solve a multitude of different design tasks.
arXiv Detail & Related papers (2023-03-31T17:59:56Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.