MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking
- URL: http://arxiv.org/abs/2407.13089v1
- Date: Thu, 18 Jul 2024 01:33:20 GMT
- Title: MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking
- Authors: Ting-Chih Chen, Chia-Wei Tang, Chris Thomas,
- Abstract summary: We present a summarization model designed to generate claim-specific summaries useful for fact-checking from multimodal datasets.
We introduce a dynamic perceiver-based model that can handle inputs from multiple modalities of arbitrary lengths.
Our approach outperforms the SOTA approach by 4.6% in the claim verification task on the MOCHEG dataset.
- Score: 0.283600654802951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fact-checking real-world claims often requires reviewing multiple multimodal documents to assess a claim's truthfulness, which is a highly laborious and time-consuming task. In this paper, we present a summarization model designed to generate claim-specific summaries useful for fact-checking from multimodal, multi-document datasets. The model takes inputs in the form of documents, images, and a claim, with the objective of assisting in fact-checking tasks. We introduce a dynamic perceiver-based model that can handle inputs from multiple modalities of arbitrary lengths. To train our model, we leverage a novel reinforcement learning-based entailment objective to generate summaries that provide evidence distinguishing between different truthfulness labels. To assess the efficacy of our approach, we conduct experiments on both an existing benchmark and a new dataset of multi-document claims that we contribute. Our approach outperforms the SOTA approach by 4.6% in the claim verification task on the MOCHEG dataset and demonstrates strong performance on our new Multi-News-Fact-Checking dataset.
Related papers
- Multimodal Misinformation Detection using Large Vision-Language Models [7.505532091249881]
Large language models (LLMs) have shown remarkable performance in various tasks.
Few approaches consider evidence retrieval as part of misinformation detection.
We propose a novel re-ranking approach for multimodal evidence retrieval.
arXiv Detail & Related papers (2024-07-19T13:57:11Z) - SEAM: A Stochastic Benchmark for Multi-Document Tasks [30.153949809172605]
There is currently no benchmark which measures abilities of large language models (LLMs) on multi-document tasks.
We present SEAM (a Evaluation Approach for Multi-document tasks), a conglomerate benchmark over a diverse set of multi-document datasets.
We find that multi-document tasks pose a significant challenge for LLMs, even for state-of-the-art models with 70B parameters.
arXiv Detail & Related papers (2024-06-23T11:57:53Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
We introduce MM-BigBench, which incorporates a diverse range of metrics to offer an extensive evaluation of the performance of various models and instructions.
Our paper evaluates a total of 20 language models (14 MLLMs) on 14 multimodal datasets spanning 6 tasks, with 10 instructions for each task, and derives novel insights.
arXiv Detail & Related papers (2023-10-13T11:57:04Z) - Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles [136.84278943588652]
We propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event.
To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm.
The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference.
arXiv Detail & Related papers (2023-09-17T20:28:17Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Peek Across: Improving Multi-Document Modeling via Cross-Document
Question-Answering [49.85790367128085]
We pre-training a generic multi-document model from a novel cross-document question answering pre-training objective.
This novel multi-document QA formulation directs the model to better recover cross-text informational relations.
Unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation and long text generation.
arXiv Detail & Related papers (2023-05-24T17:48:40Z) - Evaluating and Improving Factuality in Multimodal Abstractive
Summarization [91.46015013816083]
We propose CLIPBERTScore to leverage the robustness and strong factuality detection performance between image-summary and document-summary.
We show that this simple combination of two metrics in the zero-shot achieves higher correlations than existing factuality metrics for document summarization.
Our analysis demonstrates the robustness and high correlation of CLIPBERTScore and its components on four factuality metric-evaluation benchmarks.
arXiv Detail & Related papers (2022-11-04T16:50:40Z) - Logically at the Factify 2022: Multimodal Fact Verification [2.8914815569249823]
This paper describes our participant system for the multi-modal fact verification (Factify) challenge at AAAI 2022.
Two baseline approaches are proposed and explored including an ensemble model and a multi-modal attention network.
Our best model is ranked first in leaderboard which obtains a weighted average F-measure of 0.77 on both validation and test set.
arXiv Detail & Related papers (2021-12-16T23:34:07Z) - Modeling Endorsement for Multi-Document Abstractive Summarization [10.166639983949887]
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s)
In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization.
Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents.
arXiv Detail & Related papers (2021-10-15T03:55:42Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents.
One major challenge for this task is the lack of availability of labeled training datasets.
We propose a novel weakly supervised learning approach via utilizing distant supervision.
arXiv Detail & Related papers (2020-11-03T02:02:55Z) - SupMMD: A Sentence Importance Model for Extractive Summarization using
Maximum Mean Discrepancy [92.5683788430012]
SupMMD is a novel technique for generic and update summarization based on the maximum discrepancy from kernel two-sample testing.
We show the efficacy of SupMMD in both generic and update summarization tasks by meeting or exceeding the current state-of-the-art on the DUC-2004 and TAC-2009 datasets.
arXiv Detail & Related papers (2020-10-06T09:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.