論文の概要: Saving the legacy of Hero Ibash: Evaluating Four Language Models for
Aminoacian
- arxiv url: http://arxiv.org/abs/2402.18121v1
- Date: Wed, 28 Feb 2024 07:22:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 16:08:41.793535
- Title: Saving the legacy of Hero Ibash: Evaluating Four Language Models for
Aminoacian
- Title(参考訳): Hero Ibashの遺産を保存する - アミノ酸の4つの言語モデルの評価
- Authors: Yunze Xiao and Yiyang Pan
- Abstract要約: 本研究は,未探索のアミノアシアン語における4つの最先端言語モデルを評価する。
テキスト生成、セマンティックコヒーレンス、文脈理解における適応性、有効性、限界を精査する。
- 参考スコア(独自算出の注目度): 0.8158530638728501
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study assesses four cutting-edge language models in the underexplored
Aminoacian language. Through evaluation, it scrutinizes their adaptability,
effectiveness, and limitations in text generation, semantic coherence, and
contextual understanding. Uncovering insights into these models' performance in
a low-resourced language, this research pioneers pathways to bridge linguistic
gaps. By offering benchmarks and understanding challenges, it lays groundwork
for future advancements in natural language processing, aiming to elevate the
applicability of language models in similar linguistic landscapes, marking a
significant step toward inclusivity and progress in language technology.
- Abstract(参考訳): 本研究は,未探索のアミノ酸言語における4つの最先端言語モデルを評価する。
評価を通じて、テキスト生成、セマンティックコヒーレンス、文脈理解における適応性、有効性、限界を精査する。
この研究は、低リソース言語におけるこれらのモデルの性能に関する洞察を明らかにし、言語的ギャップを埋める経路を開拓した。
ベンチマークと理解の課題を提供することで、自然言語処理の今後の進歩の基盤を築き、同様の言語環境における言語モデルの適用性を高め、言語技術の傾きと進歩に向けた重要なステップを示す。
関連論文リスト
- The Curious Decline of Linguistic Diversity: Training Language Models on Synthetic Text [29.586404361715054]
本研究では,前任者が生成した合成データに対する学習言語モデルの影響について検討した。
その結果,連続反復によるモデル出力の多様性の連続的な低下が明らかとなった。
本研究は,言語モデルの言語能力に対する訓練手法の長期的影響を慎重に検討することの必要性を強調した。
論文 参考訳(メタデータ) (2023-11-16T11:31:50Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
音声表現を学習するための自己指導技術は、人間のラベルを必要とせずに、音声への露出から言語能力を高めることが示されている。
語彙および構文レベルで音声言語モデルを探索するために,言語習得に親しみやすいベンチマークを提案する。
テキストと音声のギャップを埋めることと、クリーンな音声とその内話のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-02T12:54:38Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
合成データを用いた体系的な実験により,すべての表現が文脈に依存しない意味を持つ言語では,自己回帰型とマスキング型の両方の言語モデルが,表現間の意味的関係をエミュレートする。
自然言語に目を向けると、特定の現象(参照不透明さ)による実験は、現在の言語モデルが自然言語の意味論をうまく表現していないという証拠を増大させる。
論文 参考訳(メタデータ) (2022-10-14T02:35:19Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in
Natural Language Understanding [1.827510863075184]
Curriculumは広範囲言語現象の評価のためのNLIベンチマークの新しいフォーマットである。
この言語フェノメナ駆動型ベンチマークは、モデル行動の診断とモデル学習品質の検証に有効なツールであることを示す。
論文 参考訳(メタデータ) (2022-04-13T10:32:03Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - The Rediscovery Hypothesis: Language Models Need to Meet Linguistics [8.293055016429863]
現代言語モデルの性能向上に言語知識が必須条件であるかどうかを検討する。
その結果, 言語構造を探索した場合, かなり圧縮されるが, 事前学習目的によく適合する言語モデルは, 良好なスコアを保っていることがわかった。
この結果は再発見仮説を支持し,本論文の第2の貢献である言語モデル目標と言語情報との関連性に関する情報論的枠組みを導出する。
論文 参考訳(メタデータ) (2021-03-02T15:57:39Z) - Linguistic Features for Readability Assessment [0.0]
言語的に動機づけられた特徴を持つディープラーニングモデルを強化することで、パフォーマンスがさらに向上するかどうかは不明だ。
十分なトレーニングデータから、言語的に動機づけられた特徴を持つディープラーニングモデルを増強しても、最先端のパフォーマンスは向上しないことがわかった。
本研究は,現在最先端のディープラーニングモデルが可読性に関連するテキストの言語的特徴を表現しているという仮説の予備的証拠を提供する。
論文 参考訳(メタデータ) (2020-05-30T22:14:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。