論文の概要: A Lightweight Low-Light Image Enhancement Network via Channel Prior and Gamma Correction
- arxiv url: http://arxiv.org/abs/2402.18147v2
- Date: Wed, 10 Jul 2024 18:29:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 23:07:33.026239
- Title: A Lightweight Low-Light Image Enhancement Network via Channel Prior and Gamma Correction
- Title(参考訳): チャネル事前補正とガンマ補正による軽量低光画像強調ネットワーク
- Authors: Shyang-En Weng, Shaou-Gang Miaou, Ricky Christanto,
- Abstract要約: LLIE(ローライト・イメージ・エンハンスメント)とは、低照度シーンの処理に適した画像エンハンスメント技術である。
我々は,暗/明のチャネル先行と深層学習によるガンマ補正を組み合わせた,革新的なLLIEネットワークであるCPGA-Netを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human vision relies heavily on available ambient light to perceive objects. Low-light scenes pose two distinct challenges: information loss due to insufficient illumination and undesirable brightness shifts. Low-light image enhancement (LLIE) refers to image enhancement technology tailored to handle this scenario. We introduce CPGA-Net, an innovative LLIE network that combines dark/bright channel priors and gamma correction via deep learning and integrates features inspired by the Atmospheric Scattering Model and the Retinex Theory. This approach combines the use of traditional and deep learning methodologies, designed within a simple yet efficient architectural framework that focuses on essential feature extraction. The resulting CPGA-Net is a lightweight network with only 0.025 million parameters and 0.030 seconds for inference time, yet it achieves superior performance over existing LLIE methods on both objective and subjective evaluation criteria. Furthermore, we utilized knowledge distillation with explainable factors and proposed an efficient version that achieves 0.018 million parameters and 0.006 seconds for inference time. The proposed approaches inject new solution ideas into LLIE, providing practical applications in challenging low-light scenarios.
- Abstract(参考訳): 人間の視覚は、物体を知覚するために利用可能な環境光に大きく依存する。
低照度シーンには、照明不足による情報損失と望ましくない明るさシフトという2つの異なる課題がある。
LLIE(ローライト・イメージ・エンハンスメント)は、このシナリオに対応するために設計された画像エンハンスメント技術である。
我々は,暗黒チャネル先行と深層学習によるガンマ補正を組み合わせた革新的なLLIEネットワークであるCPGA-Netを導入し,大気散乱モデルとレチネックス理論に触発された特徴を統合する。
このアプローチは、基本的な特徴抽出に焦点を当てた、シンプルだが効率的なアーキテクチャフレームワーク内で設計された、伝統的およびディープラーニングの方法論の使用を組み合わせる。
得られたCPGA-Netは,パラメータが0.025万,推論時間が0.030秒の軽量ネットワークである。
さらに, 知識蒸留を説明可能な要素で利用し, パラメータ0.018万, 推論時間0.006秒の効率的なバージョンを提案した。
提案手法はLLIEに新しいソリューションのアイデアを注入し、低照度シナリオに挑戦する実践的な応用を提供する。
関連論文リスト
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
低照度画像強調(LIE)は、低照度環境において劣化した画像を高精度かつ効率的に回収することを目的としている。
近年の先進的なLIE技術は、多くの低正規の光画像対、ネットワークパラメータ、計算資源を必要とするディープニューラルネットワークを使用している。
拡散先行とルックアップテーブルに基づく新しい非教師付きLIEフレームワークを考案し,低照度画像の効率的な回復を実現する。
論文 参考訳(メタデータ) (2024-09-27T16:37:27Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
単一フレームの赤外線小目標検出は難しい課題であると考えられている。
ターゲットと背景の極端に不均衡のため、境界ボックスの回帰は赤外線小ターゲットに対して非常に敏感である。
本稿では,これらの問題に対処する機能学習ネットワーク(EFLNet)を提案する。
論文 参考訳(メタデータ) (2023-07-27T09:23:22Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
本稿では,低照度画像強調(LIE)問題に対する新たなディープラーニングフレームワークを提案する。
提案フレームワークは,大域的明るさと局所的明るさ感度の両方を考慮したアルゴリズムアンロールと調整ネットワークに着想を得た分解ネットワークを含む。
一連の典型的なLIEデータセットの実験では,既存の手法と比較して,定量的かつ視覚的に,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-12T03:59:38Z) - LEDNet: Joint Low-light Enhancement and Deblurring in the Dark [100.24389251273611]
共同低照度化とデブロアリングのための最初の大規模データセットを提示する。
LOL-Blurは12,000個の低ブルー/ノーマルシャープのペアを含み、異なるシナリオで様々な暗黒と動きのぼかしを持つ。
また,LEDNetと名付けられ,低照度化と劣化を両立させる有効なネットワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T17:44:05Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
典型的なフレームワークは、照明と反射を同時に推定することであるが、特徴空間にカプセル化されたシーンレベルの文脈情報を無視する。
本研究では,空間スケールにおけるシーンレベルのコンテキスト依存を生かした,コンテキスト依存型分解ネットワークアーキテクチャを提案する。
チャネル数を減らして軽量なCSDNet(LiteCSDNet)を開発する。
論文 参考訳(メタデータ) (2021-12-09T06:25:30Z) - Learning with Nested Scene Modeling and Cooperative Architecture Search
for Low-Light Vision [95.45256938467237]
低照度シーンから撮影された画像は、しばしば深刻な劣化に悩まされる。
低照度画像の視覚的品質を高めるために深層学習法が提案されている。
他の低照度ビジョンアプリケーションを扱うために、これらの拡張テクニックを拡張することは依然として困難である。
論文 参考訳(メタデータ) (2021-12-09T06:08:31Z) - SurroundNet: Towards Effective Low-Light Image Enhancement [43.99545410176845]
我々は150ドル未満のパラメータしか含まない新しいSurroundNetを提案し、非常に競争力のある性能を実現している。
提案するネットワークは、特徴空間における単一スケールレチネックスの新規拡張と見なせる複数の適応リチネックスブロック(ARBlock)から構成される。
また、低照度化前の低照度画像の平滑化のために、LED(Low-Exposure Denoiser)を導入している。
論文 参考訳(メタデータ) (2021-10-11T09:10:19Z) - Physically Inspired Dense Fusion Networks for Relighting [45.66699760138863]
物理的洞察でニューラルネットワークを豊かにするモデルを提案する。
2つの異なる戦略により、新しい照明設定でリライト画像を生成します。
提案手法は,よく知られた忠実度指標と知覚的損失の点で,最先端手法を上回ることができることを示す。
論文 参考訳(メタデータ) (2021-05-05T17:33:45Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
我々は、深度マップを用いて、RGBと深度の間の早期融合と中核融合を誘導する単一ストリームネットワークを設計する。
このモデルは、現在の最も軽量なモデルよりも55.5%軽く、32 FPSのリアルタイム速度で384倍の384ドルの画像を処理している。
論文 参考訳(メタデータ) (2020-07-14T04:40:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。