論文の概要: Towards Unified 3D Object Detection via Algorithm and Data Unification
- arxiv url: http://arxiv.org/abs/2402.18573v5
- Date: Mon, 23 Sep 2024 14:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 04:21:34.377529
- Title: Towards Unified 3D Object Detection via Algorithm and Data Unification
- Title(参考訳): アルゴリズムとデータ統合による3次元物体の統一検出に向けて
- Authors: Zhuoling Li, Xiaogang Xu, SerNam Lim, Hengshuang Zhao,
- Abstract要約: 我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
- 参考スコア(独自算出の注目度): 70.27631528933482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realizing unified 3D object detection, including both indoor and outdoor scenes, holds great importance in applications like robot navigation. However, involving various scenarios of data to train models poses challenges due to their significantly distinct characteristics, \eg, diverse geometry properties and heterogeneous domain distributions. In this work, we propose to address the challenges from two perspectives, the algorithm perspective and data perspective. In terms of the algorithm perspective, we first build a monocular 3D object detector based on the bird's-eye-view (BEV) detection paradigm, where the explicit feature projection is beneficial to addressing the geometry learning ambiguity. In this detector, we split the classical BEV detection architecture into two stages and propose an uneven BEV grid design to handle the convergence instability caused by geometry difference between scenarios. Besides, we develop a sparse BEV feature projection strategy to reduce the computational cost and a unified domain alignment method to handle heterogeneous domains. From the data perspective, we propose to incorporate depth information to improve training robustness. Specifically, we build the first unified multi-modal 3D object detection benchmark MM-Omni3D and extend the aforementioned monocular detector to its multi-modal version, which is the first unified multi-modal 3D object detector. We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively. The experimental results reveal several insightful findings highlighting the benefits of multi-modal data and confirm the effectiveness of all the proposed strategies.
- Abstract(参考訳): 屋内と屋外の両方のシーンを含む、統合された3Dオブジェクト検出を実現することは、ロボットナビゲーションのようなアプリケーションにおいて非常に重要である。
しかし、トレーニングモデルにデータの様々なシナリオを組み込むことは、その顕著な特徴、異質な幾何学的性質、異質な領域分布などにより、課題を生じさせる。
本研究では,アルゴリズムの観点とデータ視点という2つの観点からの課題に対処することを提案する。
アルゴリズムの観点からは,まず鳥の目視(BEV)検出パラダイムに基づくモノクル3次元物体検出器を構築し,その特徴投影は幾何学学習の曖昧さに対処する上で有用である。
本研究では,従来のBEV検出アーキテクチャを2段階に分割し,シナリオ間の幾何学的差異による収束不安定性に対処する不均一なBEVグリッド設計を提案する。
さらに、計算コストを削減できるスパースなBEV特徴予測戦略と、異種ドメインを扱うための統一されたドメインアライメント手法を開発する。
データの観点から、トレーニングの堅牢性を改善するために深度情報を統合することを提案する。
具体的には、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記の単分子検出器を、最初の統一型マルチモーダル3Dオブジェクト検出器であるマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
実験結果から,マルチモーダルデータの利点を浮き彫りにし,提案手法の有効性を確認した。
関連論文リスト
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
カメラによる鳥眼視(BEV)知覚パラダイムは、自律運転分野において大きな進歩を遂げている。
画像平面のインスタンス認識をBEV検出器内の深度推定プロセスに統合するIA-BEVを提案する。
論文 参考訳(メタデータ) (2023-12-13T09:24:42Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
マルチカメラ3Dオブジェクト検出(MC3D-Det)は,鳥眼ビュー(BEV)の出現によって注目されている。
本研究では,3次元検出と2次元カメラ平面との整合性を両立させ,一貫した高精度な検出を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T15:31:28Z) - S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection [21.96072831561483]
本稿では,モノクロ3次元物体検出のためのSupervised Shape&Scale-perceptive Deformable Attention' (S$3$-DA) モジュールを提案する。
これにより、S$3$-DAは、任意のカテゴリに属するクエリポイントに対する受容的フィールドを効果的に推定し、堅牢なクエリ機能を生成することができる。
KITTIとOpenデータセットの実験では、S$3$-DAが検出精度を大幅に向上することが示された。
論文 参考訳(メタデータ) (2023-09-02T12:36:38Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
まず,MV3D-Detタスクにおける領域ギャップの原因を解析する。
頑健な深度予測を得るために,カメラの内在パラメータから深度推定を分離する手法を提案する。
焦点長の値を変更して複数の擬似ドメインを作成し、敵の訓練損失を発生させ、特徴表現をよりドメインに依存しないものにするよう促す。
論文 参考訳(メタデータ) (2023-03-03T02:59:13Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
周囲のカメラで3Dオブジェクトを検出することは、自動運転にとって有望な方向だ。
マルチカメラオブジェクト検出のための簡易ベースラインであるSimMODを提案する。
我々は, nuScenes の3次元オブジェクト検出ベンチマークにおいて, SimMOD の有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-08-22T03:38:01Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
我々は,Mono3Dオブジェクト検出に有効な統合カメラ一般化パラダイム(CGP)を提案する。
また,インスタンスレベルの拡張によりギャップを埋める2D-3D幾何一貫性オブジェクトスケーリング戦略(GCOS)を提案する。
DGMono3Dと呼ばれる手法は、評価された全てのデータセットに対して顕著な性能を達成し、SoTAの教師なしドメイン適応スキームを上回ります。
論文 参考訳(メタデータ) (2022-05-23T23:05:07Z) - MVM3Det: A Novel Method for Multi-view Monocular 3D Detection [0.0]
MVM3Detは、多視点単眼情報に基づいて、オブジェクトの3次元位置と向きを同時に推定する。
MVM3Dというマルチビュー3Dオブジェクト検出のための最初のデータセットを提案する。
論文 参考訳(メタデータ) (2021-09-22T01:31:00Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。