論文の概要: EncodingNet: A Novel Encoding-based MAC Design for Efficient Neural Network Acceleration
- arxiv url: http://arxiv.org/abs/2402.18595v2
- Date: Wed, 06 Nov 2024 07:28:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:20:15.102819
- Title: EncodingNet: A Novel Encoding-based MAC Design for Efficient Neural Network Acceleration
- Title(参考訳): EncodingNet: 効率的なニューラルネットワーク高速化のための新しいエンコーディングベースMAC設計
- Authors: Bo Liu, Grace Li Zhang, Xunzhao Yin, Ulf Schlichtmann, Bing Li,
- Abstract要約: 符号化に基づく新しいディジタル乗算累積(MAC)設計を提案する。
この新しい設計では、乗算器は単純な論理ゲートで置き換えられ、その結果を広いビット表現で表現する。
乗算関数は単純な論理表現に置き換えられるため、回路の臨界経路はより短くなる。
- 参考スコア(独自算出の注目度): 7.694043781601237
- License:
- Abstract: Deep neural networks (DNNs) have achieved great breakthroughs in many fields such as image classification and natural language processing. However, the execution of DNNs needs to conduct massive numbers of multiply-accumulate (MAC) operations on hardware and thus incurs a large power consumption. To address this challenge, we propose a novel digital MAC design based on encoding. In this new design, the multipliers are replaced by simple logic gates to represent the results with a wide bit representation. The outputs of the new multipliers are added by bit-wise weighted accumulation and the accumulation results are compatible with existing computing platforms accelerating neural networks. Since the multiplication function is replaced by a simple logic representation, the critical paths in the resulting circuits become much shorter. Correspondingly, pipelining stages and intermediate registers used to store partial sums in the MAC array can be reduced, leading to a significantly smaller area as well as better power efficiency. The proposed design has been synthesized and verified by ResNet18- Cifar10, ResNet20-Cifar100, ResNet50-ImageNet, MobileNetV2-Cifar10, MobileNetV2-Cifar100, and EfficientNetB0-ImageNet. The experimental results confirmed the reduction of circuit area by up to 48.79% and the reduction of power consumption of executing DNNs by up to 64.41%, while the accuracy of the neural networks can still be well maintained. The open source code of this work can be found on GitHub with link https://github.com/Bo-Liu-TUM/EncodingNet/.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、画像分類や自然言語処理など、多くの分野で大きなブレークスルーを遂げている。
しかし、DNNの実行はハードウェア上で大量の乗算累積演算(MAC)を実行する必要があるため、大量の電力消費が発生する。
この課題に対処するために,符号化に基づく新しいディジタルMAC設計を提案する。
この新しい設計では、乗算器は単純な論理ゲートで置き換えられ、その結果を広いビット表現で表現する。
新しい乗算器の出力はビット重み付け蓄積によって加算され、蓄積結果はニューラルネットワークを加速する既存のコンピューティングプラットフォームと互換性がある。
乗算関数は単純な論理表現に置き換えられるため、回路の臨界経路はより短くなる。
それに対応して、MACアレイに部分和を保持するのに使用されるパイプライニングステージと中間レジスタを削減できるため、より少ない面積と電力効率が向上する。
提案した設計は、ResNet18-Cifar10、ResNet20-Cifar100、ResNet50-ImageNet、MobileNetV2-Cifar10、MobileNetV2-Cifar100、EfficientNetB0-ImageNetによって合成および検証されている。
実験の結果、回路面積を最大48.79%削減し、DNNの実行電力を最大64.41%削減した。
この作業のオープンソースコードはGitHubでhttps://github.com/Bo-Liu-TUM/EncodingNet/.comにリンクされている。
関連論文リスト
- Quality Scalable Quantization Methodology for Deep Learning on Edge [0.20718016474717196]
ディープラーニングアーキテクチャは重い計算を使い、計算エネルギーの大部分は畳み込みニューラルネットワークの畳み込み演算によって取り込まれる。
提案する研究は、ユビキタスコンピューティングデバイス上でエッジコンピューティングで機械学習技術を使用する場合、CNNのエネルギー消費とサイズを削減することである。
LeNetとConvNetsで実施された実験では、ゼロの6%まで増加し、メモリ節約量は82.4919%まで増加し、最先端の精度を維持した。
論文 参考訳(メタデータ) (2024-07-15T22:00:29Z) - BasisN: Reprogramming-Free RRAM-Based In-Memory-Computing by Basis Combination for Deep Neural Networks [9.170451418330696]
本研究では,任意のクロスバー上のディープニューラルネットワーク(DNN)をリプログラミングせずに高速化するBasisNフレームワークを提案する。
その結果, クロスバーに再プログラミングを適用する場合と比較して, 推論毎のサイクルとエネルギー遅延生成物は1%以下に削減された。
論文 参考訳(メタデータ) (2024-07-04T08:47:05Z) - A&B BNN: Add&Bit-Operation-Only Hardware-Friendly Binary Neural Network [5.144744286453014]
A&B BNNは、従来のBNNにおける乗算操作の一部を削除し、残りを同じ数のビット演算で置き換えることを提案する。
マスク層は、BNNの固有の特性を活用することにより、推論中に除去することができる。
量子化RPReLU構造は、傾きを2の整数パワーに制限することで、より効率的なビット演算を可能にする。
論文 参考訳(メタデータ) (2024-03-06T14:28:49Z) - Saving RNN Computations with a Neuron-Level Fuzzy Memoization Scheme [0.0]
リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、音声認識や機械翻訳などのアプリケーションにおいて重要な技術である。
我々は,各ニューロンの出力を動的にキャッシュし,現在の出力が以前計算された結果に類似すると予測されたときに再利用する,ニューロンレベルのファジィメモ化スキームを構築した。
提案手法は26.7%以上の計算を回避し、21%の省エネと1.4倍の高速化を実現している。
論文 参考訳(メタデータ) (2022-02-14T09:02:03Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - Adder Neural Networks [75.54239599016535]
我々は、ディープニューラルネットワークにおける大規模な乗算を交換するために、加算器ネットワーク(AdderNets)を提案する。
AdderNetsでは、フィルタと入力特徴の間の$ell_p$-norm距離を出力応答として取ります。
提案したAdderNetsは,ImageNetデータセット上でResNet-50を用いて,75.7%のTop-1精度92.3%のTop-5精度を達成可能であることを示す。
論文 参考訳(メタデータ) (2021-05-29T04:02:51Z) - ShiftAddNet: A Hardware-Inspired Deep Network [87.18216601210763]
ShiftAddNetはエネルギー効率のよい乗算レスディープニューラルネットワークである。
エネルギー効率のよい推論とトレーニングの両方につながるが、表現能力は損なわれない。
ShiftAddNetは、DNNのトレーニングと推論において、80%以上のハードウェア量子化されたエネルギーコストを積極的に削減し、同等またはより良い精度を提供する。
論文 参考訳(メタデータ) (2020-10-24T05:09:14Z) - Efficient Integer-Arithmetic-Only Convolutional Neural Networks [87.01739569518513]
我々は従来のReLUを境界ReLUに置き換え、その減少は活性化量子化によるものであることを示す。
我々の整数ネットワークは、対応するFPNネットワークと同等の性能を発揮するが、メモリコストは1/4に過ぎず、最新のGPUでは2倍高速である。
論文 参考訳(メタデータ) (2020-06-21T08:23:03Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z) - AdderNet: Do We Really Need Multiplications in Deep Learning? [159.174891462064]
我々は、深層ニューラルネットワークにおける膨大な乗算を、計算コストを削減するためにはるかに安価な加算のために取引するための加算器ネットワーク(AdderNets)を提案する。
本稿では,AdderNets のバックプロパゲーション手法を提案する。
その結果、提案されたAdderNetsは、ImageNetデータセット上でResNet-50を使用して、74.9%のTop-1精度91.7%のTop-5精度を達成することができる。
論文 参考訳(メタデータ) (2019-12-31T06:56:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。