Pre-training Differentially Private Models with Limited Public Data
- URL: http://arxiv.org/abs/2402.18752v2
- Date: Tue, 29 Oct 2024 01:22:58 GMT
- Title: Pre-training Differentially Private Models with Limited Public Data
- Authors: Zhiqi Bu, Xinwei Zhang, Mingyi Hong, Sheng Zha, George Karypis,
- Abstract summary: differential privacy (DP) is a prominent method to gauge the degree of security provided to the models.
DP is yet not capable of protecting a substantial portion of the data used during the initial pre-training stage.
We develop a novel DP continual pre-training strategy using only 10% of public data.
Our strategy can achieve DP accuracy of 41.5% on ImageNet-21k, as well as non-DP accuracy of 55.7% and and 60.0% on downstream tasks Places365 and iNaturalist-2021.
- Score: 54.943023722114134
- License:
- Abstract: The superior performance of large foundation models relies on the use of massive amounts of high-quality data, which often contain sensitive, private and copyrighted material that requires formal protection. While differential privacy (DP) is a prominent method to gauge the degree of security provided to the models, its application is commonly limited to the model fine-tuning stage, due to the performance degradation when applying DP during the pre-training stage. Consequently, DP is yet not capable of protecting a substantial portion of the data used during the initial pre-training process. In this work, we first provide a theoretical understanding of the efficacy of DP training by analyzing the per-iteration loss improvement. We make a key observation that DP optimizers' performance degradation can be significantly mitigated by the use of limited public data, which leads to a novel DP continual pre-training strategy. Empirically, using only 10\% of public data, our strategy can achieve DP accuracy of 41.5\% on ImageNet-21k (with $\epsilon=8$), as well as non-DP accuracy of 55.7\% and and 60.0\% on downstream tasks Places365 and iNaturalist-2021, respectively, on par with state-of-the-art standard pre-training and substantially outperforming existing DP pre-trained models. Our DP pre-trained models are released in fastDP library (https://github.com/awslabs/fast-differential-privacy/releases/tag/v2.1)
Related papers
- DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.
To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - Noise-Aware Differentially Private Regression via Meta-Learning [25.14514068630219]
Differential Privacy (DP) is the gold standard for protecting user privacy, but standard DP mechanisms significantly impair performance.
One approach to mitigating this issue is pre-training models on simulated data before DP learning on the private data.
In this work we go a step further, using simulated data to train a meta-learning model that combines the Convolutional Conditional Neural Process (ConvCNP) with an improved functional DP mechanism.
arXiv Detail & Related papers (2024-06-12T18:11:24Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
Differentially private gradient descent (DP-SGD) allows models to be trained in a privacy-preserving manner.
We introduce DP-ZO, a private fine-tuning framework for large language models by privatizing zeroth order optimization methods.
arXiv Detail & Related papers (2024-01-09T03:53:59Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGD is a training algorithm that combines differential privacy with gradient descent.
Applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency.
We present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models.
arXiv Detail & Related papers (2023-11-14T17:59:51Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Unlocking High-Accuracy Differentially Private Image Classification
through Scale [45.93988209606857]
Differential Privacy (DP) provides a formal privacy guarantee preventing adversaries with access to a machine learning model from extracting information about individual training points.
Previous works have found that DP-SGD often leads to a significant degradation in performance on standard image classification benchmarks.
We demonstrate that DP-SGD on over- parameterized models can perform significantly better than previously thought.
arXiv Detail & Related papers (2022-04-28T17:10:56Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private (DP) learning has seen limited success for building large deep learning models of text.
We show that this performance drop can be mitigated with the use of large pretrained models.
We propose a memory saving technique that allows clipping in DP-SGD to run without instantiating per-example gradients.
arXiv Detail & Related papers (2021-10-12T01:45:27Z) - An Efficient DP-SGD Mechanism for Large Scale NLP Models [28.180412581994485]
Data used to train Natural Language Understanding (NLU) models may contain private information such as addresses or phone numbers.
It is desirable that underlying models do not expose private information contained in the training data.
Differentially Private Gradient Descent (DP-SGD) has been proposed as a mechanism to build privacy-preserving models.
arXiv Detail & Related papers (2021-07-14T15:23:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.