Noise-Aware Differentially Private Regression via Meta-Learning
- URL: http://arxiv.org/abs/2406.08569v1
- Date: Wed, 12 Jun 2024 18:11:24 GMT
- Title: Noise-Aware Differentially Private Regression via Meta-Learning
- Authors: Ossi Räisä, Stratis Markou, Matthew Ashman, Wessel P. Bruinsma, Marlon Tobaben, Antti Honkela, Richard E. Turner,
- Abstract summary: Differential Privacy (DP) is the gold standard for protecting user privacy, but standard DP mechanisms significantly impair performance.
One approach to mitigating this issue is pre-training models on simulated data before DP learning on the private data.
In this work we go a step further, using simulated data to train a meta-learning model that combines the Convolutional Conditional Neural Process (ConvCNP) with an improved functional DP mechanism.
- Score: 25.14514068630219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many high-stakes applications require machine learning models that protect user privacy and provide well-calibrated, accurate predictions. While Differential Privacy (DP) is the gold standard for protecting user privacy, standard DP mechanisms typically significantly impair performance. One approach to mitigating this issue is pre-training models on simulated data before DP learning on the private data. In this work we go a step further, using simulated data to train a meta-learning model that combines the Convolutional Conditional Neural Process (ConvCNP) with an improved functional DP mechanism of Hall et al. [2013] yielding the DPConvCNP. DPConvCNP learns from simulated data how to map private data to a DP predictive model in one forward pass, and then provides accurate, well-calibrated predictions. We compare DPConvCNP with a DP Gaussian Process (GP) baseline with carefully tuned hyperparameters. The DPConvCNP outperforms the GP baseline, especially on non-Gaussian data, yet is much faster at test time and requires less tuning.
Related papers
- How Private are DP-SGD Implementations? [61.19794019914523]
We show that there can be a substantial gap between the privacy analysis when using the two types of batch sampling.
Our result shows that there can be a substantial gap between the privacy analysis when using the two types of batch sampling.
arXiv Detail & Related papers (2024-03-26T13:02:43Z) - Pre-training Differentially Private Models with Limited Public Data [54.943023722114134]
differential privacy (DP) is a prominent method to gauge the degree of security provided to the models.
DP is yet not capable of protecting a substantial portion of the data used during the initial pre-training stage.
We develop a novel DP continual pre-training strategy using only 10% of public data.
Our strategy can achieve DP accuracy of 41.5% on ImageNet-21k, as well as non-DP accuracy of 55.7% and and 60.0% on downstream tasks Places365 and iNaturalist-2021.
arXiv Detail & Related papers (2024-02-28T23:26:27Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
Differentially private gradient descent (DP-SGD) allows models to be trained in a privacy-preserving manner.
We introduce DP-ZO, a private fine-tuning framework for large language models by privatizing zeroth order optimization methods.
arXiv Detail & Related papers (2024-01-09T03:53:59Z) - Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD [44.11069254181353]
We show that DP-SGD leaks significantly less privacy for many datapoints when trained on common benchmarks.
This implies privacy attacks will necessarily fail against many datapoints if the adversary does not have sufficient control over the possible training datasets.
arXiv Detail & Related papers (2023-07-01T11:51:56Z) - DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling [23.8561225168394]
differential privacy (DP) has become a well-accepted standard for privacy protection, and deep neural networks (DNN) have been immensely successful in machine learning.
A classic mechanism for this purpose is DP-SGD, which is a differentially private version of the gradient descent (SGD) commonly used for training.
We propose DPIS, a novel mechanism for differentially private SGD training that can be used as a drop-in replacement of the core of DP-SGD.
arXiv Detail & Related papers (2022-10-18T07:03:14Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private (DP) learning has seen limited success for building large deep learning models of text.
We show that this performance drop can be mitigated with the use of large pretrained models.
We propose a memory saving technique that allows clipping in DP-SGD to run without instantiating per-example gradients.
arXiv Detail & Related papers (2021-10-12T01:45:27Z) - An Efficient DP-SGD Mechanism for Large Scale NLP Models [28.180412581994485]
Data used to train Natural Language Understanding (NLU) models may contain private information such as addresses or phone numbers.
It is desirable that underlying models do not expose private information contained in the training data.
Differentially Private Gradient Descent (DP-SGD) has been proposed as a mechanism to build privacy-preserving models.
arXiv Detail & Related papers (2021-07-14T15:23:27Z) - Gaussian Processes with Differential Privacy [3.934224774675743]
We add strong privacy protection to Gaussian processes (GPs) via differential privacy (DP)
We achieve this by using sparse GP methodology and publishing a private variational approximation on known inducing points.
Our experiments demonstrate that given sufficient amount of data, the method can produce accurate models under strong privacy protection.
arXiv Detail & Related papers (2021-06-01T13:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.