論文の概要: Utilizing Local Hierarchy with Adversarial Training for Hierarchical
Text Classification
- arxiv url: http://arxiv.org/abs/2402.18825v1
- Date: Thu, 29 Feb 2024 03:20:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 16:12:10.046456
- Title: Utilizing Local Hierarchy with Adversarial Training for Hierarchical
Text Classification
- Title(参考訳): 階層型テキスト分類のための逆学習による局所階層の利用
- Authors: Zihan Wang, Peiyi Wang, Houfeng Wang
- Abstract要約: 階層的テキスト分類(HTC)は、その複雑な分類学的構造のために難しいサブタスクである。
我々は,ほぼすべてのHTCモデルに適合するHiAdvフレームワークを提案し,それを補助情報としてローカル階層で最適化する。
- 参考スコア(独自算出の注目度): 34.11471571514832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical text classification (HTC) is a challenging subtask of
multi-label classification due to its complex taxonomic structure. Nearly all
recent HTC works focus on how the labels are structured but ignore the
sub-structure of ground-truth labels according to each input text which
contains fruitful label co-occurrence information. In this work, we introduce
this local hierarchy with an adversarial framework. We propose a HiAdv
framework that can fit in nearly all HTC models and optimize them with the
local hierarchy as auxiliary information. We test on two typical HTC models and
find that HiAdv is effective in all scenarios and is adept at dealing with
complex taxonomic hierarchies. Further experiments demonstrate that the
promotion of our framework indeed comes from the local hierarchy and the local
hierarchy is beneficial for rare classes which have insufficient training data.
- Abstract(参考訳): 階層的テキスト分類(htc)は、複雑な分類構造のため、マルチラベル分類の難しいサブタスクである。
最近のhtcのほとんどすべての製品は、ラベルの構造化に重点を置いているが、実りあるラベル共起情報を含む各入力テキストに従って、接地ラベルのサブ構造を無視している。
本稿では,この局所的な階層構造を逆の枠組みで紹介する。
我々は,ほぼすべてのHTCモデルに適合するHiAdvフレームワークを提案し,それを補助情報としてローカル階層で最適化する。
我々は2つの典型的なHTCモデルをテストし、HiAdvがすべてのシナリオで有効であり、複雑な分類学的階層を扱うのに十分であることを確認した。
さらなる実験により,学習データ不足のレアクラスに対して,局所階層と局所階層によるフレームワークの促進が有効であることが示された。
関連論文リスト
- HiLight: A Hierarchy-aware Light Global Model with Hierarchical Local ConTrastive Learning [3.889612454093451]
階層的テキスト分類(HTC)はマルチラベル分類(MLC)のサブタスクである
階層型局所コントラスト学習(HiLCL)と呼ばれる階層型情報を導入するための新しい学習課題を提案する。
論文 参考訳(メタデータ) (2024-08-11T14:26:58Z) - Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification [10.578682558356473]
階層的テキスト分類(HTC)は、低リソースまたは少数ショットの設定を考慮すると、パフォーマンスが低下する。
本稿では,HTC を単一あるいは複数ラベルの分類問題として扱う多言語フレームワークである階層型動詞化器 (HierVerb) を提案する。
このように、HierVerbはラベル階層の知識を動詞化子に融合させ、グラフエンコーダを通じて階層を注入する者よりも著しく優れています。
論文 参考訳(メタデータ) (2023-05-26T12:41:49Z) - HiTIN: Hierarchy-aware Tree Isomorphism Network for Hierarchical Text
Classification [18.03202012033514]
本稿では階層型木同型ネットワーク(HiTIN)を提案する。
我々は3つの一般的なデータセットで実験を行い、その結果、HiTINはより良いテスト性能とメモリ消費を達成できることを示した。
論文 参考訳(メタデータ) (2023-05-24T14:14:08Z) - HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification [45.314357107687286]
マルチラベルの観点からHTCを扱うための階層型Prompt Tuning法であるHPTを提案する。
具体的には,ラベル階層の知識を融合させるために,ソフトプロンプトの形式を取り入れた動的仮想テンプレートとラベル語を構築した。
実験によると、HPTは3つの人気のあるHTCデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-04-28T11:22:49Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Constrained Sequence-to-Tree Generation for Hierarchical Text
Classification [10.143177923523407]
階層的テキスト分類(HTC)は、分類学内で複数の階層的に構造化されたカテゴリに文書を割り当てる難易度の高いタスクである。
本稿では,HTCをシーケンス生成タスクとして定式化し,階層的なラベル構造をモデル化するためのシーケンス・ツー・ツリー・フレームワーク(Seq2Tree)を導入する。
論文 参考訳(メタデータ) (2022-04-02T08:35:39Z) - Deep Hierarchical Semantic Segmentation [76.40565872257709]
階層的セマンティックセマンティックセグメンテーション(HSS)は、クラス階層の観点で視覚的観察を構造化、ピクセル単位で記述することを目的としている。
HSSNは、HSSを画素単位のマルチラベル分類タスクとしてキャストし、現在のセグメンテーションモデルに最小限のアーキテクチャ変更をもたらすだけである。
階層構造によって引き起こされるマージンの制約により、HSSNはピクセル埋め込み空間を再評価し、よく構造化されたピクセル表現を生成する。
論文 参考訳(メタデータ) (2022-03-27T15:47:44Z) - Hierarchical Text Classification As Sub-Hierarchy Sequence Generation [8.062201442038957]
階層的テキスト分類(HTC)は、様々な実アプリケーションに必須である。
最近のHTCモデルは階層情報をモデル構造に組み込もうとしている。
我々はHTCをサブ階層シーケンス生成として定式化し、階層情報をターゲットラベルシーケンスに組み込む。
HiDECは、ベンチマークデータセットの既存のモデルよりもモデルパラメータが大幅に少ない最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2021-11-22T10:50:39Z) - HTCInfoMax: A Global Model for Hierarchical Text Classification via
Information Maximization [75.45291796263103]
階層的テキスト分類のための現在の最新モデルHiAGMには2つの制限がある。
関連しない情報を含むデータセット内のすべてのラベルと、各テキストサンプルを関連付ける。
2つのモジュールを含む情報を導入することで、これらの問題に対処するHTCInfoMaxを提案します。
論文 参考訳(メタデータ) (2021-04-12T06:04:20Z) - MATCH: Metadata-Aware Text Classification in A Large Hierarchy [60.59183151617578]
MATCHはメタデータと階層情報の両方を利用するエンドツーエンドのフレームワークである。
親による各子ラベルのパラメータと出力確率を正規化するさまざまな方法を提案します。
大規模なラベル階層を持つ2つの大規模なテキストデータセットの実験は、MATCHの有効性を示しています。
論文 参考訳(メタデータ) (2021-02-15T05:23:08Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
提案手法は,Recall@50において,複数の最先端ベースラインを大きなマージン(最大33%の相対利得)で改善することができる。
実験により,提案手法により,最先端のベースラインを大きなマージンで改善できることが示された。
論文 参考訳(メタデータ) (2020-09-12T17:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。