Training-set-free two-stage deep learning for spectroscopic data
de-noising
- URL: http://arxiv.org/abs/2402.18830v2
- Date: Tue, 5 Mar 2024 12:39:23 GMT
- Title: Training-set-free two-stage deep learning for spectroscopic data
de-noising
- Authors: Dongchen Huang, Junde Liu, Tian Qian, and Hongming Weng
- Abstract summary: De-noising is a prominent step in the spectra post-processing procedure.
Previous machine learning-based methods are fast but mostly based on supervised learning.
Unsupervised-based algorithms are slow and require a training set that may be typically expensive in real experimental measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: De-noising is a prominent step in the spectra post-processing procedure.
Previous machine learning-based methods are fast but mostly based on supervised
learning and require a training set that may be typically expensive in real
experimental measurements. Unsupervised learning-based algorithms are slow and
require many iterations to achieve convergence. Here, we bridge this gap by
proposing a training-set-free two-stage deep learning method. We show that the
fuzzy fixed input in previous methods can be improved by introducing an
adaptive prior. Combined with more advanced optimization techniques, our
approach can achieve five times acceleration compared to previous work.
Theoretically, we study the landscape of a corresponding non-convex linear
problem, and our results indicates that this problem has benign geometry for
first-order algorithms to converge.
Related papers
- Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
We consider first- and second-order techniques to address continuous optimization problems in machine learning.
In the first-order case, we propose a framework of transition from semi-deterministic to quadratic regularization methods.
In the second-order case, we propose a novel first-order algorithm with adaptive sampling and adaptive step size.
arXiv Detail & Related papers (2021-11-29T18:10:00Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Learning to solve TV regularized problems with unrolled algorithms [18.241062505073234]
Total Variation (TV) is a popular regularization strategy that promotes piece-wise constant signals.
We develop and characterize two approaches to do so, describe their benefits and limitations, and discuss the regime where they can actually improve over iterative procedures.
arXiv Detail & Related papers (2020-10-19T14:19:02Z) - Regret minimization in stochastic non-convex learning via a
proximal-gradient approach [80.59047515124198]
Motivated by applications in machine learning and operations, we regret with first-order oracle feedback minimization online constrained problems.
We develop a new prox-grad with guarantees proximal complexity reduction techniques.
arXiv Detail & Related papers (2020-10-13T09:22:21Z) - Second-order Neural Network Training Using Complex-step Directional
Derivative [41.4333906662624]
We introduce a numerical algorithm for second-order neural network training.
We tackle the practical obstacle of Hessian calculation by using the complex-step finite difference.
We believe our method will inspire a wide-range of new algorithms for deep learning and numerical optimization.
arXiv Detail & Related papers (2020-09-15T13:46:57Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
Training deep neural networks using a large batch size has shown promising results and benefits many real-world applications.
In this paper, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-batch training.
Based on our analysis, we bridge the gap and illustrate the theoretical insights for three popular large-batch training techniques.
arXiv Detail & Related papers (2020-02-04T23:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.