Improving Group Connectivity for Generalization of Federated Deep
Learning
- URL: http://arxiv.org/abs/2402.18949v1
- Date: Thu, 29 Feb 2024 08:27:01 GMT
- Title: Improving Group Connectivity for Generalization of Federated Deep
Learning
- Authors: Zexi Li, Jie Lin, Zhiqi Li, Didi Zhu, Chao Wu
- Abstract summary: Federated learning (FL) involves multiple clients collaboratively training a global model via iterative local updates and model fusion.
In this paper, we study and improve FL's generalization through a fundamental connectivity'' perspective.
We propose FedGuCci and FedGuCci+, improving group connectivity for better generalization.
- Score: 8.594665698279522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) involves multiple heterogeneous clients
collaboratively training a global model via iterative local updates and model
fusion. The generalization of FL's global model has a large gap compared with
centralized training, which is its bottleneck for broader applications. In this
paper, we study and improve FL's generalization through a fundamental
``connectivity'' perspective, which means how the local models are connected in
the parameter region and fused into a generalized global model. The term
``connectivity'' is derived from linear mode connectivity (LMC), studying the
interpolated loss landscape of two different solutions (e.g., modes) of neural
networks. Bridging the gap between LMC and FL, in this paper, we leverage fixed
anchor models to empirically and theoretically study the transitivity property
of connectivity from two models (LMC) to a group of models (model fusion in
FL). Based on the findings, we propose FedGuCci and FedGuCci+, improving group
connectivity for better generalization. It is shown that our methods can boost
the generalization of FL under client heterogeneity across various tasks (4 CV
datasets and 6 NLP datasets), models (both convolutional and
transformer-based), and training paradigms (both from-scratch and
pretrain-finetune).
Related papers
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing.
While various algorithms have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention.
arXiv Detail & Related papers (2024-09-05T19:00:18Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - FedGH: Heterogeneous Federated Learning with Generalized Global Header [16.26231633749833]
Federated learning (FL) is an emerging machine learning paradigm that allows multiple parties to train a shared model.
We propose a simple but effective Federated Global prediction Header (FedGH) approach.
FedGH trains a shared generalized global prediction header with representations by heterogeneous extractors for clients' models.
arXiv Detail & Related papers (2023-03-23T09:38:52Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
We show how the chosen approach for training custom client models has an impact on the global model.
We propose a new approach that combines KD and Learning without Forgetting (LwoF) to produce improved personalised models.
arXiv Detail & Related papers (2022-11-07T11:12:57Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Personalized Federated Learning with Clustered Generalization [16.178571176116073]
We study the recent emerging personalized learning (PFL) that aims at dealing with the challenging problem of Non-I.I.D. data in the learning setting.
Key difference between PFL and conventional FL methods in the training target.
We propose a novel concept called clustered generalization to handle the challenge of statistical heterogeneity in FL.
arXiv Detail & Related papers (2021-06-24T14:17:00Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
We study federated learning, which enables mobile devices to utilize their local datasets to train a global model.
We introduce a lossy FL (LFL) algorithm, in which both the global model and the local model updates are quantized before being transmitted.
arXiv Detail & Related papers (2020-06-18T16:55:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.