A Simple and Efficient Joint Measurement Strategy for Estimating Fermionic Observables and Hamiltonians
- URL: http://arxiv.org/abs/2402.19230v2
- Date: Fri, 24 May 2024 13:39:12 GMT
- Title: A Simple and Efficient Joint Measurement Strategy for Estimating Fermionic Observables and Hamiltonians
- Authors: Joanna Majsak, Daniel McNulty, MichaĆ Oszmaniec,
- Abstract summary: We propose a simple scheme to estimate fermionic observables and Hamiltonians relevant in quantum chemistry and correlated fermionic systems.
Our approach is based on implementing a measurement that jointly measures noisy versions of any product of two or four Majorana operators in an $N$ mode fermionic system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a simple scheme to estimate fermionic observables and Hamiltonians relevant in quantum chemistry and correlated fermionic systems. Our approach is based on implementing a measurement that jointly measures noisy versions of any product of two or four Majorana operators in an $N$ mode fermionic system. To realize our measurement we use: (i) a randomization over a set of unitaries that realize products of Majorana fermion operators; (ii) a unitary, sampled at random from a constant-size set of suitably chosen fermionic Gaussian unitaries; (iii) a measurement of fermionic occupation numbers; (iv) suitable post-processing. Our scheme can estimate expectation values of all quadratic and quartic Majorana monomials to $\epsilon$ precision using $\mathcal{O}(N \log(N)/\epsilon^2)$ and $\mathcal{O}(N^2 \log(N)/\epsilon^2)$ measurement rounds respectively, matching the performance offered by fermionic shadow tomography. In certain settings, such as a rectangular lattice of qubits which encode an $N$ mode fermionic system via the Jordan-Wigner transformation, our scheme can be implemented in circuit depth $\mathcal{O}(N^{1/2})$ with $\mathcal{O}(N^{3/2})$ two-qubit gates, offering an improvement over fermionic and matchgate classical shadows that require depth $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$ two-qubit gates. By benchmarking our method on exemplary molecular Hamiltonians and observing performances comparable to fermionic classical shadows, we demonstrate a novel, competitive alternative to existing strategies.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - The Cost of Entanglement Renormalization on a Fault-Tolerant Quantum Computer [0.042855555838080824]
We perform a detailed estimate for the prospect of using deep entanglement renormalization ansatz on a fault-tolerant quantum computer.
For probing a relatively large system size, we observe up to an order of magnitude reduction in the number of qubits.
For estimating the energy per site of $epsilon$, $mathcalOleft(fraclog Nepsilon right)$ $T$ gates and $mathcalOleft(log Nright)$ qubits suffice.
arXiv Detail & Related papers (2024-04-15T18:00:17Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Digital-Analog Quantum Computation with Arbitrary Two-Body Hamiltonians [0.0]
Digital-analog quantum computing is a computational paradigm which employs an analog Hamiltonian resource together with single-qubit gates to reach universality.
We design a new scheme which employs an arbitrary two-body source Hamiltonian, extending the experimental applicability of this computational paradigm to most quantum platforms.
arXiv Detail & Related papers (2023-07-03T12:36:32Z) - Almost optimal measurement scheduling of molecular Hamiltonian via finite projective plane [0.0]
We propose an efficient and almost optimal scheme for measuring molecular Hamiltonians in quantum chemistry on quantum computers.
It requires $2N2$ distinct measurements in the leading order with $N$ being the number of molecular orbitals.
Because evaluating expectation values of molecular Hamiltonians is one of the major bottlenecks in the applications of quantum devices to quantum chemistry, our finding is expected to accelerate such applications.
arXiv Detail & Related papers (2023-01-18T06:51:18Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Second-quantized fermionic operators with polylogarithmic qubit and gate
complexity [0.0]
We present a method for encoding second-quantized fermionic systems in qubits when the number of fermions is conserved.
This is the first second-quantized encoding of fermions in qubits whose costs in qubits and gates are both polylogarithmic in $M$.
arXiv Detail & Related papers (2021-09-29T14:53:23Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Fermionic partial tomography via classical shadows [0.0]
We propose a tomographic protocol for estimating any $ k $-body reduced density matrix ($ k $-RDM) of an $ n $-mode fermionic state.
Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum-state properties, to the fermionic setting.
arXiv Detail & Related papers (2020-10-30T06:28:26Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.