Statistical Estimation in the Spiked Tensor Model via the Quantum
Approximate Optimization Algorithm
- URL: http://arxiv.org/abs/2402.19456v1
- Date: Thu, 29 Feb 2024 18:50:28 GMT
- Title: Statistical Estimation in the Spiked Tensor Model via the Quantum
Approximate Optimization Algorithm
- Authors: Leo Zhou, Joao Basso, Song Mei
- Abstract summary: The quantum approximate optimization algorithm (QAOA) is a general-purpose algorithm for optimization.
We prove that the weak recovery threshold of $1$-step QAOA matches that of $1$-step tensor power iteration.
For some $p$ and $q$, the QAOA attains an overlap that is larger by a constant factor than the tensor power overlap.
- Score: 17.955614278088238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is a general-purpose
algorithm for combinatorial optimization. In this paper, we analyze the
performance of the QAOA on a statistical estimation problem, namely, the spiked
tensor model, which exhibits a statistical-computational gap classically. We
prove that the weak recovery threshold of $1$-step QAOA matches that of
$1$-step tensor power iteration. Additional heuristic calculations suggest that
the weak recovery threshold of $p$-step QAOA matches that of $p$-step tensor
power iteration when $p$ is a fixed constant. This further implies that
multi-step QAOA with tensor unfolding could achieve, but not surpass, the
classical computation threshold $\Theta(n^{(q-2)/4})$ for spiked $q$-tensors.
Meanwhile, we characterize the asymptotic overlap distribution for $p$-step
QAOA, finding an intriguing sine-Gaussian law verified through simulations. For
some $p$ and $q$, the QAOA attains an overlap that is larger by a constant
factor than the tensor power iteration overlap. Of independent interest, our
proof techniques employ the Fourier transform to handle difficult combinatorial
sums, a novel approach differing from prior QAOA analyses on spin-glass models
without planted structure.
Related papers
- Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent [83.85536329832722]
We show that gradient descent (SGD) can efficiently solve the $k$-parity problem on a $d$dimensional hypercube.
We then demonstrate how a trained neural network with SGD, solving the $k$-parity problem with small statistical errors.
arXiv Detail & Related papers (2024-04-18T17:57:53Z) - On the Accuracy of Hotelling-Type Tensor Deflation: A Random Tensor
Analysis [16.28927188636617]
A rank-$r$ asymmetric spiked model of the form $sum_i=1r beta_i A_i + W$ is considered.
We provide a study of Hotelling-type deflation in the large dimensional regime.
arXiv Detail & Related papers (2022-11-16T16:01:56Z) - Performance and limitations of the QAOA at constant levels on large
sparse hypergraphs and spin glass models [15.857373057387669]
We prove concentration properties at any constant level (number of layers) on ensembles of random optimization problems in the infinite size limit.
Our analysis can be understood via a saddle-point approximation of a sum-over-paths integral.
We show that the performance of the QAOA at constant levels is bounded away from optimality for pure $q$-spin models when $qge 4$ and is even.
arXiv Detail & Related papers (2022-04-21T17:40:39Z) - Provably Efficient Convergence of Primal-Dual Actor-Critic with
Nonlinear Function Approximation [15.319335698574932]
We show the first efficient convergence result with primal-dual actor-critic with a convergence of $mathcalOleft ascent(Nright)Nright)$ under Polyian sampling.
Results on Open GymAI continuous control tasks.
arXiv Detail & Related papers (2022-02-28T15:16:23Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - Finite-Time Analysis for Double Q-learning [50.50058000948908]
We provide the first non-asymptotic, finite-time analysis for double Q-learning.
We show that both synchronous and asynchronous double Q-learning are guaranteed to converge to an $epsilon$-accurate neighborhood of the global optimum.
arXiv Detail & Related papers (2020-09-29T18:48:21Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Differentially Quantized Gradient Methods [53.3186247068836]
We show that Differentially Quantized Gradient Descent (DQ-GD) attains a linear contraction factor of $maxsigma_mathrmGD, rhon 2-R$.
No algorithm within a certain class can converge faster than $maxsigma_mathrmGD, 2-R$.
arXiv Detail & Related papers (2020-02-06T20:40:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.