Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2404.12376v1
- Date: Thu, 18 Apr 2024 17:57:53 GMT
- Title: Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
- Authors: Yiwen Kou, Zixiang Chen, Quanquan Gu, Sham M. Kakade,
- Abstract summary: We show that gradient descent (SGD) can efficiently solve the $k$-parity problem on a $d$dimensional hypercube.
We then demonstrate how a trained neural network with SGD, solving the $k$-parity problem with small statistical errors.
- Score: 83.85536329832722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $k$-parity problem is a classical problem in computational complexity and algorithmic theory, serving as a key benchmark for understanding computational classes. In this paper, we solve the $k$-parity problem with stochastic gradient descent (SGD) on two-layer fully-connected neural networks. We demonstrate that SGD can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube ($k\le O(\sqrt{d})$) with a sample complexity of $\tilde{O}(d^{k-1})$ using $2^{\Theta(k)}$ neurons, thus matching the established $\Omega(d^{k})$ lower bounds of Statistical Query (SQ) models. Our theoretical analysis begins by constructing a good neural network capable of correctly solving the $k$-parity problem. We then demonstrate how a trained neural network with SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors. Our theoretical results and findings are supported by empirical evidence, showcasing the efficiency and efficacy of our approach.
Related papers
- Convergence Rate Analysis of LION [54.28350823319057]
LION converges iterations of $cal(sqrtdK-)$ measured by gradient Karush-Kuhn-T (sqrtdK-)$.
We show that LION can achieve lower loss and higher performance compared to standard SGD.
arXiv Detail & Related papers (2024-11-12T11:30:53Z) - Collaborative non-parametric two-sample testing [55.98760097296213]
The goal is to identify nodes where the null hypothesis $p_v = q_v$ should be rejected.
We propose the non-parametric collaborative two-sample testing (CTST) framework that efficiently leverages the graph structure.
Our methodology integrates elements from f-divergence estimation, Kernel Methods, and Multitask Learning.
arXiv Detail & Related papers (2024-02-08T14:43:56Z) - SGD Finds then Tunes Features in Two-Layer Neural Networks with
near-Optimal Sample Complexity: A Case Study in the XOR problem [1.3597551064547502]
We consider the optimization process of minibatch descent gradient (SGD) on a 2-layer neural network with data separated by a quadratic ground truth function.
We prove that with data drawn from the $d$-dimensional Boolean hypercube labeled by the quadratic XOR'' function $y = -x_ix_j$, it is possible to train to a population error $o(1)$ with $d :textpolylog(d)$ samples.
arXiv Detail & Related papers (2023-09-26T17:57:44Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
We study the problem of PAC $gamma$-margin halfspaces with Random Classification Noise.
We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms.
arXiv Detail & Related papers (2023-06-28T16:33:39Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
We investigate the generalization and optimization of shallow neural-networks trained by gradient in the interpolating regime.
We prove the training loss number minimizations $m=Omega(log4 (n))$ neurons and neurons $Tapprox n$.
With $m=Omega(log4 (n))$ neurons and $Tapprox n$, we bound the test loss training by $tildeO (1/)$.
arXiv Detail & Related papers (2023-02-18T05:06:15Z) - Is Stochastic Gradient Descent Near Optimal? [0.0]
We show that gradient descent achieves small expected error with a number of samples and total number of queries.
This suggests that SGD nearly achieves the information-theoretic sample complexity bounds of Joen & Van Roy (arXiv:2203.00246) in a computationally efficient manner.
arXiv Detail & Related papers (2022-09-18T18:26:43Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - High-Dimensional Inference over Networks: Linear Convergence and
Statistical Guarantees [20.701475313495884]
We study a sparse linear regression over a network of agents, modeled as an undirected graph and no server node.
We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm.
arXiv Detail & Related papers (2022-01-21T01:26:08Z) - An efficient projection neural network for $\ell_1$-regularized logistic
regression [10.517079029721257]
This paper presents a simple projection neural network for $ell_$-regularized logistics regression.
The proposed neural network does not require any extra auxiliary variable nor any smooth approximation.
We also investigate the convergence of the proposed neural network by using the Lyapunov theory and show that it converges to a solution of the problem with any arbitrary initial value.
arXiv Detail & Related papers (2021-05-12T06:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.