論文の概要: SeMoLi: What Moves Together Belongs Together
- arxiv url: http://arxiv.org/abs/2402.19463v2
- Date: Mon, 25 Mar 2024 14:27:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 01:25:45.969089
- Title: SeMoLi: What Moves Together Belongs Together
- Title(参考訳): SeMoLi: 一緒に動くもの
- Authors: Jenny Seidenschwarz, Aljoša Ošep, Francesco Ferroni, Simon Lucey, Laura Leal-Taixé,
- Abstract要約: 動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
- 参考スコア(独自算出の注目度): 51.72754014130369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle semi-supervised object detection based on motion cues. Recent results suggest that heuristic-based clustering methods in conjunction with object trackers can be used to pseudo-label instances of moving objects and use these as supervisory signals to train 3D object detectors in Lidar data without manual supervision. We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner. We leverage recent advances in scene flow estimation to obtain point trajectories from which we extract long-term, class-agnostic motion patterns. Revisiting correlation clustering in the context of message passing networks, we learn to group those motion patterns to cluster points to object instances. By estimating the full extent of the objects, we obtain per-scan 3D bounding boxes that we use to supervise a Lidar object detection network. Our method not only outperforms prior heuristic-based approaches (57.5 AP, +14 improvement over prior work), more importantly, we show we can pseudo-label and train object detectors across datasets.
- Abstract(参考訳): 動作手がかりに基づく半教師付き物体検出に挑戦する。
近年の研究では,移動物体の擬似ラベルインスタンスにオブジェクトトラッカーを併用したヒューリスティックなクラスタリング手法を応用し,これらを監視信号として使用することにより,手動の監督なしにライダーデータ中の3次元物体検出器を訓練することができることが示唆されている。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
我々は,シーンフロー推定の最近の進歩を活用して,長期的クラスに依存しない動作パターンを抽出する点軌跡を得る。
メッセージパッシングネットワークのコンテキストにおける相関クラスタリングを再検討し、それらの動きパターンをクラスタポイントとオブジェクトインスタンスにグループ化する。
オブジェクトの全範囲を推定することにより、Lidarオブジェクト検出ネットワークを監督するために使用するスキャンごとの3Dバウンディングボックスを得る。
提案手法は,従来のヒューリスティックなアプローチ(57.5 AP,+14改善)に勝るだけでなく,データセット間で擬似ラベルとオブジェクト検出の訓練を行うことができることを示す。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Vision-Language Guidance for LiDAR-based Unsupervised 3D Object Detection [16.09503890891102]
我々は,LiDAR点雲のみで動作する教師なし3次元検出手法を提案する。
我々は、クラスタリング、トラッキング、ボックステキスト、ラベルリファインメントなど、LiDARポイントクラウドの固有のCLI時間知識を活用している。
提案手法はオープンデータセット上での最先端の非教師なし3Dオブジェクト検出器よりも優れている。
論文 参考訳(メタデータ) (2024-08-07T14:14:53Z) - PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
PatchContrastは、3Dオブジェクト検出のための新しい自己教師付きポイントクラウド事前学習フレームワークである。
提案手法は,3つの一般的な3次元検出データセットにおいて,既存の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-14T07:45:54Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
本稿では,高性能なオフラインLiDARによる3Dオブジェクト検出を実現することを目的とする。
まず、経験豊富な人間のアノテータが、トラック中心の視点でオブジェクトに注釈を付けるのを観察する。
従来のオブジェクト中心の視点ではなく,トラック中心の視点で高性能なオフライン検出器を提案する。
論文 参考訳(メタデータ) (2023-04-24T17:59:05Z) - InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data [13.196031553445117]
本稿では,3次元LiDARスキャンにおける移動物体のセグメント化という課題に対処する新しいネットワークを提案する。
提案手法は点雲の列を入力として利用し,それらを4次元ボクセルに定量化する。
我々は,4Dボクセルから運動特徴を抽出し,電流スキャンに注入するために,4Dスパース畳み込みを用いる。
論文 参考訳(メタデータ) (2023-03-07T14:12:52Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - Track, Check, Repeat: An EM Approach to Unsupervised Tracking [20.19397660306534]
本研究では, 移動物体を3Dで検出・追跡する非監視手法を, RGB-D動画で提案する。
重度データ拡張により,外観に基づく2次元および3次元検出器のアンサンブルを学習する。
CATERとKITTIの挑戦的なビデオを使用して、既存の監視されていないオブジェクト発見と追跡方法と比較します。
論文 参考訳(メタデータ) (2021-04-07T22:51:39Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking [34.40019455462043]
本稿では,時間点雲データから3次元オブジェクト対応を学習し,対応パターンから動き情報を推測する。
提案手法は,KITTIと大規模Nuscenesデータセットの双方において,既存の3次元追跡手法を超えている。
論文 参考訳(メタデータ) (2020-10-20T06:07:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。