Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking
- URL: http://arxiv.org/abs/2010.10051v1
- Date: Tue, 20 Oct 2020 06:07:20 GMT
- Title: Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking
- Authors: Jieqi Shi, Peiliang Li, Shaojie Shen
- Abstract summary: We propose to learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns.
Our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.
- Score: 34.40019455462043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A robust 3D object tracker which continuously tracks surrounding objects and
estimates their trajectories is key for self-driving vehicles. Most existing
tracking methods employ a tracking-by-detection strategy, which usually
requires complex pair-wise similarity computation and neglects the nature of
continuous object motion. In this paper, we propose to directly learn 3D object
correspondences from temporal point cloud data and infer the motion information
from correspondence patterns. We modify the standard 3D object detector to
process two lidar frames at the same time and predict bounding box pairs for
the association and motion estimation tasks. We also equip our pipeline with a
simple yet effective velocity smoothing module to estimate consistent object
motion. Benifiting from the learned correspondences and motion refinement, our
method exceeds the existing 3D tracking methods on both the KITTI and larger
scale Nuscenes dataset.
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
We find that the motion cue of objects along different time frames is critical in 3D multi-object tracking.
We propose MoMA-M3T, a framework that mainly consists of three motion-aware components.
We conduct extensive experiments on the nuScenes and KITTI datasets to demonstrate our MoMA-M3T achieves competitive performance against state-of-the-art methods.
arXiv Detail & Related papers (2023-08-22T17:53:58Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - SpOT: Spatiotemporal Modeling for 3D Object Tracking [68.12017780034044]
3D multi-object tracking aims to consistently identify all mobile time.
Current 3D tracking methods rely on abstracted information and limited history.
We develop a holistic representation of scenes that leverage both spatial and temporal information.
arXiv Detail & Related papers (2022-07-12T21:45:49Z) - Time3D: End-to-End Joint Monocular 3D Object Detection and Tracking for
Autonomous Driving [3.8073142980733]
We propose jointly training 3D detection and 3D tracking from only monocular videos in an end-to-end manner.
Time3D achieves 21.4% AMOTA, 13.6% AMOTP on the nuScenes 3D tracking benchmark, surpassing all published competitors.
arXiv Detail & Related papers (2022-05-30T06:41:10Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - 3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature
Correlation [0.0]
3D-FCT is a Siamese network architecture that utilizes temporal information to simultaneously perform the related tasks of 3D object detection and tracking.
Our proposed method is evaluated on the KITTI tracking dataset where it is shown to provide an improvement of 5.57% mAP over a state-of-the-art approach.
arXiv Detail & Related papers (2021-10-06T06:36:29Z) - Exploring Simple 3D Multi-Object Tracking for Autonomous Driving [10.921208239968827]
3D multi-object tracking in LiDAR point clouds is a key ingredient for self-driving vehicles.
Existing methods are predominantly based on the tracking-by-detection pipeline and inevitably require a matching step for the detection association.
We present SimTrack to simplify the hand-crafted tracking paradigm by proposing an end-to-end trainable model for joint detection and tracking from raw point clouds.
arXiv Detail & Related papers (2021-08-23T17:59:22Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.