論文の概要: Towards Generalizable Tumor Synthesis
- arxiv url: http://arxiv.org/abs/2402.19470v2
- Date: Thu, 28 Mar 2024 16:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 20:43:01.288122
- Title: Towards Generalizable Tumor Synthesis
- Title(参考訳): 一般化可能な腫瘍合成を目指して
- Authors: Qi Chen, Xiaoxi Chen, Haorui Song, Zhiwei Xiong, Alan Yuille, Chen Wei, Zongwei Zhou,
- Abstract要約: 腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
本論文は, 臨界観察を生かして, 一般化可能な腫瘍合成に向けて進歩的な一歩を踏み出した。
私たちは、Diffusion Modelsのような生成AIモデルが、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を作成できることを確認した。
- 参考スコア(独自算出の注目度): 48.45704270448412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation. However, success in tumor synthesis hinges on creating visually realistic tumors that are generalizable across multiple organs and, furthermore, the resulting AI models being capable of detecting real tumors in images sourced from different domains (e.g., hospitals). This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation: early-stage tumors (< 2cm) tend to have similar imaging characteristics in computed tomography (CT), whether they originate in the liver, pancreas, or kidneys. We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ. Moreover, we have shown that AI models trained on these synthetic tumors can be generalized to detect and segment real tumors from CT volumes, encompassing a broad spectrum of patient demographics, imaging protocols, and healthcare facilities.
- Abstract(参考訳): 腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
しかし、腫瘍合成の成功は、複数の臓器にまたがって一般化可能な視覚的に現実的な腫瘍を作成すること、さらに、異なるドメイン(例えば病院)から生成された画像中の実際の腫瘍を検出できるAIモデルが成功している。
肝・膵・腎臓に起源を呈する早期腫瘍 (2cm) はCT(Computed tomography) に類似した画像像を呈する傾向がみられた。
生成型AIモデルである拡散モデル(Diffusion Models)が、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を生成できることが確認された。
さらに、これらの合成腫瘍で訓練されたAIモデルを一般化して、CTボリュームから実際の腫瘍を検出し、セグメント化できることが示されている。
関連論文リスト
- Analyzing Tumors by Synthesis [11.942932753828854]
腫瘍合成は、腫瘍検出とセグメンテーションのためのAIトレーニングを支援するために、医療画像に多数の腫瘍例を生成する。
この章では、実データと合成データに関するAI開発についてレビューする。
ケーススタディによると、合成腫瘍で訓練されたAIは、実際のデータで訓練されたAIに匹敵する、あるいはそれ以上のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-09-09T19:51:44Z) - From Pixel to Cancer: Cellular Automata in Computed Tomography [12.524228287083888]
腫瘍合成は、医療画像に人工腫瘍を作ろうとする。
本稿では腫瘍発生をシミュレートする汎用ルールのセットを確立する。
我々は,腫瘍状態をCT画像に統合し,異なる臓器にまたがる合成腫瘍を生成する。
論文 参考訳(メタデータ) (2024-03-11T06:46:31Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Early Detection and Localization of Pancreatic Cancer by Label-Free
Tumor Synthesis [11.86190788916592]
膵癌の早期発見と局所化は、患者の5年間の生存率を8.5%から20%に引き上げることができる。
トレーニングAIモデルには、多数の注釈付きサンプルが必要だが、早期の腫瘍を取得するCTスキャンが利用可能であることには制約がある。
手動のアノテーションを必要とせず, 膵内小膵腫瘍の膨大な例を合成できる腫瘍合成法を開発した。
論文 参考訳(メタデータ) (2023-08-06T03:37:34Z) - Label-Free Liver Tumor Segmentation [10.851067782021902]
我々は, 合成腫瘍をCTスキャンで使用することにより, 手動によるアノテーションを必要とせずに, 肝腫瘍を正確に分類できることを示した。
私たちの合成腫瘍には、現実的な形状とテクスチャという、2つの興味深い利点があります。
私たちの合成腫瘍は、小さな(あるいは小さな)合成腫瘍の多くの例を自動的に生成することができます。
論文 参考訳(メタデータ) (2023-03-27T01:22:12Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
ヒトの読者や放射線医は、臨床実践において、全身多臓器多臓器の検出と診断を日常的に行う。
ほとんどの医療用AIシステムは、いくつかの疾患のリストの狭い単一の臓器に焦点を当てて構築されている。
CancerUniT は、マルチ腫瘍予測の出力を持つクエリベースの Mask Transformer モデルである。
論文 参考訳(メタデータ) (2023-01-28T20:09:34Z) - Synthetic Tumors Make AI Segment Tumors Better [10.851067782021902]
我々は合成腫瘍を生成するための新しい戦略を開発した。
腫瘍は形やテクスチャがリアルで、医療従事者でも本物の腫瘍と混同できる。
私たちの合成腫瘍は、小さな腫瘍検出の成功率を向上させる可能性がある。
論文 参考訳(メタデータ) (2022-10-26T16:45:19Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。