Self-testing of genuine multipartite non-local and non-maximally entangled states
- URL: http://arxiv.org/abs/2403.00010v3
- Date: Sat, 11 May 2024 06:21:03 GMT
- Title: Self-testing of genuine multipartite non-local and non-maximally entangled states
- Authors: Ranendu Adhikary,
- Abstract summary: We present a Cabello-like paradox for scenarios involving an arbitrary number of parties.
This is a tool for detecting genuine multipartite nonlocality.
We operate within the standard self-testing framework to self-test genuine multipartite non-local and non-maximally entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-testing enables the characterization of quantum systems with minimal assumptions on their internal working as such it represents the strongest form of certification for quantum systems. In the existing self-testing literature, self-testing states that are not maximally entangled, but exhibit genuine multipartite nonlocality, have remained an open problem. This is particularly important because, for many-body systems, genuine multipartite nonlocality has been recognized as the strongest form of multipartite quantum correlation. In this work, we present a Cabello-like paradox for scenarios involving an arbitrary number of parties. This paradox is a tool for detecting genuine multipartite nonlocality, allowing for the specific identification and self-testing of states that defy the paradox's limits the most, which turn out to be non-maximally multipartite entangled states. While recent results [\textit{\v{S}upi\'c et al., Nature Physics, 2023}] suggest network self-testing as a means to self-test all quantum states, here we operate within the standard self-testing framework to self-test genuine multipartite non-local and non-maximally entangled states.
Related papers
- Robust self-testing of the $m-$partite maximally entangled state and observables [0.0]
We propose a simple and efficient self-testing protocol that certifies the state and observables based on the optimal quantum violation of the Svetlichny inequality.
Our method leverages an elegant sum-of-squares approach to derive the optimal quantum value of the Svetlichny functional, devoid of assuming the dimension of the quantum system.
arXiv Detail & Related papers (2024-08-20T11:03:37Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Network-assist free self-testing of genuine multipartite entangled
states [0.8348593305367524]
Bipartite pure entangled states can be self-tested, but, in the case of multipartite pure entangled states, the answer is not so straightforward.
We provide a self-testing scheme for genuine multipartite pure entangle states in the true sense by employing a generalized Hardy-type non-local argument.
arXiv Detail & Related papers (2023-11-13T12:04:03Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Self-testing of multipartite GHZ states of arbitrary local dimension
with arbitrary number of measurements per party [0.0]
Device independent certification schemes have gained a lot of interest lately.
strongest form of device independent certification, known as self-testing, often requires for a Bell inequality to be maximally violated.
We provide the first self-testing scheme for the multipartite Greenberger-Horne-Zeilinger (GHZ) states of arbitrary local dimension.
arXiv Detail & Related papers (2021-12-20T21:26:52Z) - Experimental self-testing for photonic graph states [8.032105713088473]
We have experimentally demonstrated device-independent certification for multipartite graph states.
Our work paves the way to the device-independent certification of complex multipartite quantum states.
arXiv Detail & Related papers (2021-11-15T07:26:15Z) - Coarse-grained self-testing [0.0]
We show how a coarse-grained version of self-testing is possible in which physically relevant properties of a many-body system are certified.
We prove that a many-body generalization of the chained Bell inequality is maximally violated if and only if the underlying quantum state is equal, up to local isometries, to a many-body singlet.
arXiv Detail & Related papers (2021-03-22T09:19:51Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.