Robust self-testing of the $m-$partite maximally entangled state and observables
- URL: http://arxiv.org/abs/2408.10732v1
- Date: Tue, 20 Aug 2024 11:03:37 GMT
- Title: Robust self-testing of the $m-$partite maximally entangled state and observables
- Authors: Ritesh K. Singh, Souradeep Sasmal, A. K. Pan,
- Abstract summary: We propose a simple and efficient self-testing protocol that certifies the state and observables based on the optimal quantum violation of the Svetlichny inequality.
Our method leverages an elegant sum-of-squares approach to derive the optimal quantum value of the Svetlichny functional, devoid of assuming the dimension of the quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As quantum technologies continue to advance rapidly, the device-independent testing of the functioning of a quantum device has become increasingly important. Self-testing, a correlation based protocol, enables such certification of a promised quantum state as well as measurements performed on it without requiring knowledge of the device's internal workings. This approach typically relies on achieving the optimal quantum violation of a suitable Bell inequality. Self-testing has been extensively investigated in the context of bipartite Bell experiments. However, its extension to multipartite scenarios remains largely unexplored, owing to the intricate nature of multipartite quantum correlations. In this work, we propose a simple and efficient self-testing protocol that certifies the state and observables based on the optimal quantum violation of the Svetlichny inequality involving an arbitrary number of parties, each with two inputs. Our method leverages an elegant sum-of-squares approach to derive the optimal quantum value of the Svetlichny functional, devoid of assuming the dimension of the quantum system. This enables the self-testing of the $m-$partite maximally entangled state and local anti-commuting observables for each party. Moreover, we develop a swap circuit isometry to assess the proximity of reference states and measurements to their ideal counterparts in the presence of noise and imperfections in real experiments, thereby demonstrating the robustness of our self-testing protocol. Finally, we illustrate how our self-testing protocol facilitates the generation of certified genuine randomness from correlations that enable the optimal violation of the Svetlichny inequality.
Related papers
- Self-testing of multiple unsharpness parameters through sequential violations of non-contextual inequality [0.0]
We put forth a protocol for self-testing of noisy quantum instruments.
We derive the optimal set of quantum violations without specifying the dimension of the quantum system.
arXiv Detail & Related papers (2024-08-19T19:04:48Z) - Quantum Non-Demolition Measurements and Leggett-Garg inequality [0.0]
Quantum non-demolition measurements define a non-invasive protocol to extract information from a quantum system.
This protocol leads to a quasi-probability distribution for the measured observable outcomes, which can be negative.
We show that there are situations in which Leggett-Garg inequalities are satisfied even if the macrorealism condition is violated.
arXiv Detail & Related papers (2024-07-31T18:04:51Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Self-Testing of a Single Quantum System: Theory and Experiment [5.9385501903680815]
We develop a robust self-testing protocol based on the simplest contextuality witness for the simplest contextual quantum system.
We apply the method in an experiment with randomly chosen measurements on a single trapped $40rm Ca+$ and near-perfect detection efficiency.
We quantify and report that deviations from our assumptions are minimal, an aspect previously overlooked by contextuality experiments.
arXiv Detail & Related papers (2022-03-17T00:48:30Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Robust self-testing of steerable quantum assemblages and its
applications on device-independent quantum certification [0.0]
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing.
We propose a framework called "robust self-testing of steerable quantum assemblages"
Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved.
arXiv Detail & Related papers (2020-02-07T14:50:16Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.