Lower Bounds for Differential Privacy Under Continual Observation and Online Threshold Queries
- URL: http://arxiv.org/abs/2403.00028v2
- Date: Wed, 17 Apr 2024 23:59:19 GMT
- Title: Lower Bounds for Differential Privacy Under Continual Observation and Online Threshold Queries
- Authors: Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, Uri Stemmer,
- Abstract summary: We show a new lower bound of $Omegaleft(minn,log Tright)$, which is tight w.r.t. the dependence on $T$.
We also show that our lower bound extends to the "online thresholds problem", where the goal is to privately answer many "quantile queries"
- Score: 31.339322747660635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most basic problems for studying the "price of privacy over time" is the so called private counter problem, introduced by Dwork et al. (2010) and Chan et al. (2010). In this problem, we aim to track the number of events that occur over time, while hiding the existence of every single event. More specifically, in every time step $t\in[T]$ we learn (in an online fashion) that $\Delta_t\geq 0$ new events have occurred, and must respond with an estimate $n_t\approx\sum_{j=1}^t \Delta_j$. The privacy requirement is that all of the outputs together, across all time steps, satisfy event level differential privacy. The main question here is how our error needs to depend on the total number of time steps $T$ and the total number of events $n$. Dwork et al. (2015) showed an upper bound of $O\left(\log(T)+\log^2(n)\right)$, and Henzinger et al. (2023) showed a lower bound of $\Omega\left(\min\{\log n, \log T\}\right)$. We show a new lower bound of $\Omega\left(\min\{n,\log T\}\right)$, which is tight w.r.t. the dependence on $T$, and is tight in the sparse case where $\log^2 n=O(\log T)$. Our lower bound has the following implications: $\bullet$ We show that our lower bound extends to the "online thresholds problem", where the goal is to privately answer many "quantile queries" when these queries are presented one-by-one. This resolves an open question of Bun et al. (2017). $\bullet$ Our lower bound implies, for the first time, a separation between the number of mistakes obtainable by a private online learner and a non-private online learner. This partially resolves a COLT'22 open question published by Sanyal and Ramponi. $\bullet$ Our lower bound also yields the first separation between the standard model of private online learning and a recently proposed relaxed variant of it, called private online prediction.
Related papers
- Continual Counting with Gradual Privacy Expiration [15.87191465142231]
We show that our algorithm achieves an additive error of $ O(log(T)/epsilon)$ for a large set of privacy expiration functions.
Our empirical evaluation shows that we achieve a slowly growing privacy loss with significantly smaller empirical privacy loss for large values of $d$ than a natural baseline algorithm.
arXiv Detail & Related papers (2024-06-06T07:20:16Z) - On the Growth of Mistakes in Differentially Private Online Learning: A Lower Bound Perspective [8.104151304193216]
We provide lower bounds for Differentially Private (DP) Online Learning algorithms.
Our work is the first result towards settling lower bounds for DP-Online learning.
arXiv Detail & Related papers (2024-02-26T17:49:37Z) - The Sample Complexity of Online Contract Design [120.9833763323407]
We study the hidden-action principal-agent problem in an online setting.
In each round, the principal posts a contract that specifies the payment to the agent based on each outcome.
The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal.
arXiv Detail & Related papers (2022-11-10T17:59:42Z) - Minimal Expected Regret in Linear Quadratic Control [79.81807680370677]
We devise an online learning algorithm and provide guarantees on its expected regret.
This regret at time $T$ is upper bounded (i) by $widetildeO((d_u+d_x)sqrtd_xT)$ when $A$ and $B$ are unknown.
arXiv Detail & Related papers (2021-09-29T14:07:21Z) - Littlestone Classes are Privately Online Learnable [28.04975353867202]
We consider the problem of online classification under a privacy constraint.
In this setting a learner observes sequentially a stream of labelled examples $(x_t, y_t)$, for $1 leq t leq T$, and returns at each iteration a hypothesis $h_t$ which is used to predict the label of each new example $x_t$.
The learner's performance is measured by her regret against a known hypothesis class $mathcalH$.
arXiv Detail & Related papers (2021-06-25T09:08:33Z) - Near-Optimal Algorithms for Differentially Private Online Learning in a Stochastic Environment [7.4288915613206505]
We study differentially private online learning problems in a environment under both bandit and full information feedback.
For differentially private bandits, we propose both UCB and Thompson Sampling-based algorithms that are anytime and achieve the optimal $O left(sum_j: Delta_j>0 fracln(T)min leftDelta_j, epsilon right right)$ minimax lower bound.
For the same differentially private full information setting, we also present an $epsilon$-differentially
arXiv Detail & Related papers (2021-02-16T02:48:16Z) - On Avoiding the Union Bound When Answering Multiple Differentially
Private Queries [49.453751858361265]
We give an algorithm for this task that achieves an expected $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$.
On the other hand, the algorithm of Dagan and Kur has a remarkable advantage that the $ell_infty$ error bound of $O(frac1epsilonsqrtk log frac1delta)$ holds not only in expectation but always.
arXiv Detail & Related papers (2020-12-16T17:58:45Z) - On Distributed Differential Privacy and Counting Distinct Elements [52.701425652208734]
We study the setup where each of $n$ users holds an element from a discrete set.
The goal is to count the number of distinct elements across all users.
arXiv Detail & Related papers (2020-09-21T04:13:34Z) - Private Query Release Assisted by Public Data [96.6174729958211]
We study the problem of differentially private query release assisted by access to public data.
We show that we can solve the problem for any query class $mathcalH$ of finite VC-dimension using only $d/alpha$ public samples and $sqrtpd3/2/alpha2$ private samples.
arXiv Detail & Related papers (2020-04-23T02:46:37Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.