Scaling up Dynamic Edge Partition Models via Stochastic Gradient MCMC
- URL: http://arxiv.org/abs/2403.00044v1
- Date: Thu, 29 Feb 2024 15:19:35 GMT
- Title: Scaling up Dynamic Edge Partition Models via Stochastic Gradient MCMC
- Authors: Sikun Yang, Heinz Koeppl
- Abstract summary: The edge partition model (EPM) is a generative model for extracting an overlapping community structure from static graph-structured data.
Despite having many attractive properties, inference in the EPM is typically performed using Markov chain Monte Carlo (MCMC) methods that prevent it from being applied to massive network data.
- Score: 33.08344607564694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The edge partition model (EPM) is a generative model for extracting an
overlapping community structure from static graph-structured data. In the EPM,
the gamma process (GaP) prior is adopted to infer the appropriate number of
latent communities, and each vertex is endowed with a gamma distributed
positive memberships vector. Despite having many attractive properties,
inference in the EPM is typically performed using Markov chain Monte Carlo
(MCMC) methods that prevent it from being applied to massive network data. In
this paper, we generalize the EPM to account for dynamic enviroment by
representing each vertex with a positive memberships vector constructed using
Dirichlet prior specification, and capturing the time-evolving behaviour of
vertices via a Dirichlet Markov chain construction. A simple-to-implement Gibbs
sampler is proposed to perform posterior computation using Negative- Binomial
augmentation technique. For large network data, we propose a stochastic
gradient Markov chain Monte Carlo (SG-MCMC) algorithm for scalable inference in
the proposed model. The experimental results show that the novel methods
achieve competitive performance in terms of link prediction, while being much
faster.
Related papers
- Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.
We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Object based Bayesian full-waveform inversion for shear elastography [0.0]
We develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues.
We find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli.
We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes.
arXiv Detail & Related papers (2023-05-11T08:25:25Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
We consider quadratic definite Ising models on the hypercube with a general interaction $J$.
Our general result implies the first time sampling algorithms for low-rank Ising models.
arXiv Detail & Related papers (2022-02-17T21:43:50Z) - Structured Stochastic Gradient MCMC [20.68905354115655]
We propose a new non-parametric variational approximation that makes no assumptions about the approximate posterior's functional form.
We obtain better predictive likelihoods and larger effective sample sizes than full SGMCMC.
arXiv Detail & Related papers (2021-07-19T17:18:10Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of $D$-dimensional data points.
Parameters of the model are iteratively estimated through an Expectation-Maximization procedure.
arXiv Detail & Related papers (2021-06-16T18:00:02Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
We present an adaptive Hessian approximated gradient MCMC method to incorporate local geometric information while sampling from the posterior.
We adopt a magnitude-based weight pruning method to enforce the sparsity of the network.
arXiv Detail & Related papers (2020-10-03T16:22:15Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.