UniTS: A Unified Multi-Task Time Series Model
- URL: http://arxiv.org/abs/2403.00131v3
- Date: Mon, 25 Nov 2024 20:12:55 GMT
- Title: UniTS: A Unified Multi-Task Time Series Model
- Authors: Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, Marinka Zitnik,
- Abstract summary: UniTS is a unified multi-task time series model that integrates predictive and generative tasks into a single framework.
UniTS is tested on 38 datasets across human activity sensors, healthcare, engineering, and finance.
- Score: 31.675845788410246
- License:
- Abstract: Although pre-trained transformers and reprogrammed text-based LLMs have shown strong performance on time series tasks, the best-performing architectures vary widely across tasks, with most models narrowly focused on specific areas, such as time series forecasting. Unifying predictive and generative time series tasks within a single model remains challenging. We introduce UniTS, a unified multi-task time series model that utilizes task tokenization to integrate predictive and generative tasks into a single framework. UniTS employs a modified transformer block to capture universal time series representations, enabling transferability from a heterogeneous, multi-domain pre-training dataset-characterized by diverse dynamic patterns, sampling rates, and temporal scales-to a wide range of downstream datasets with varied task specifications and data domains. Tested on 38 datasets across human activity sensors, healthcare, engineering, and finance, UniTS achieves superior performance compared to 12 forecasting models, 20 classification models, 18 anomaly detection models, and 16 imputation models, including adapted text-based LLMs. UniTS also demonstrates strong few-shot and prompt capabilities when applied to new domains and tasks. In single-task settings, UniTS outperforms competitive task-specialized time series models. Code and datasets are available at https://github.com/mims-harvard/UniTS.
Related papers
- Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
Training Large Time Series Models (LTSMs) on heterogeneous time series data poses unique challenges.
We propose emphtime series prompt, a novel statistical prompting strategy tailored to time series data.
We introduce textttLTSM-bundle, which bundles the best design choices we have identified.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - NuwaTS: a Foundation Model Mending Every Incomplete Time Series [24.768755438620666]
We present textbfNuwaTS, a novel framework that repurposes Pre-trained Language Models for general time series imputation.
NuwaTS can be applied to impute missing data across any domain.
We show that NuwaTS generalizes to other time series tasks, such as forecasting.
arXiv Detail & Related papers (2024-05-24T07:59:02Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - DuETT: Dual Event Time Transformer for Electronic Health Records [14.520791492631114]
We introduce the DuETT architecture, an extension of Transformers designed to attend over both time and event type dimensions.
DuETT uses an aggregated input where sparse time series are transformed into a regular sequence with fixed length.
Our model outperforms state-of-the-art deep learning models on multiple downstream tasks from the MIMIC-IV and PhysioNet-2012 EHR datasets.
arXiv Detail & Related papers (2023-04-25T17:47:48Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
We propose a novel framework named Ti-MAE, in which the input time series are assumed to follow an integrate distribution.
Ti-MAE randomly masks out embedded time series data and learns an autoencoder to reconstruct them at the point-level.
Experiments on several public real-world datasets demonstrate that our framework of masked autoencoding could learn strong representations directly from the raw data.
arXiv Detail & Related papers (2023-01-21T03:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.