Conflict-Averse Gradient Aggregation for Constrained Multi-Objective Reinforcement Learning
- URL: http://arxiv.org/abs/2403.00282v2
- Date: Fri, 31 May 2024 07:19:03 GMT
- Title: Conflict-Averse Gradient Aggregation for Constrained Multi-Objective Reinforcement Learning
- Authors: Dohyeong Kim, Mineui Hong, Jeongho Park, Songhwai Oh,
- Abstract summary: In many real-world applications, a reinforcement learning (RL) agent should consider multiple objectives and adhere to safety guidelines.
We propose a constrained multi-objective gradient aggregation algorithm named Constrained Multi-Objective Gradient Aggregator (CoGAMO)
- Score: 13.245000585002858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world applications, a reinforcement learning (RL) agent should consider multiple objectives and adhere to safety guidelines. To address these considerations, we propose a constrained multi-objective RL algorithm named Constrained Multi-Objective Gradient Aggregator (CoMOGA). In the field of multi-objective optimization, managing conflicts between the gradients of the multiple objectives is crucial to prevent policies from converging to local optima. It is also essential to efficiently handle safety constraints for stable training and constraint satisfaction. We address these challenges straightforwardly by treating the maximization of multiple objectives as a constrained optimization problem (COP), where the constraints are defined to improve the original objectives. Existing safety constraints are then integrated into the COP, and the policy is updated using a linear approximation, which ensures the avoidance of gradient conflicts. Despite its simplicity, CoMOGA guarantees optimal convergence in tabular settings. Through various experiments, we have confirmed that preventing gradient conflicts is critical, and the proposed method achieves constraint satisfaction across all tasks.
Related papers
- C-MORL: Multi-Objective Reinforcement Learning through Efficient Discovery of Pareto Front [9.04360155372014]
Constrained MORL is a seamless bridge between constrained policy optimization and MORL.
Our algorithm achieves more consistent and superior performances in terms of hypervolume, expected utility, and sparsity on both discrete and continuous control tasks.
arXiv Detail & Related papers (2024-10-03T06:13:56Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy.
arXiv Detail & Related papers (2024-05-28T11:41:41Z) - Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning [26.244121960815907]
We propose a primal-based framework that orchestrates policy optimization between multi-objective learning and constraint adherence.
Our method employs a novel natural policy gradient manipulation method to optimize multiple RL objectives.
Empirically, our proposed method also outperforms prior state-of-the-art methods on challenging safe multi-objective reinforcement learning tasks.
arXiv Detail & Related papers (2024-05-26T00:42:10Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
arXiv Detail & Related papers (2024-02-23T23:22:06Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Gradient Shaping for Multi-Constraint Safe Reinforcement Learning [31.297400160104853]
Online safe reinforcement learning (RL) involves training a policy that maximizes task efficiency while satisfying constraints via interacting with the environments.
We propose a unified framework designed for MC safe RL algorithms.
We introduce the Gradient Shaping (GradS) method for general Lagrangian-based safe RL algorithms to improve the training efficiency in terms of both reward and constraint satisfaction.
arXiv Detail & Related papers (2023-12-23T00:55:09Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Multi-Agent Constrained Policy Optimisation [17.772811770726296]
We formulate the safe MARL problem as a constrained Markov game and solve it with policy optimisation methods.
Our solutions -- Multi-Agent Constrained Policy optimisation (MACPO) and MAPPO-Lagrangian -- leverage the theories from both constrained policy optimisation and multi-agent trust region learning.
We develop the benchmark suite of Safe Multi-Agent MuJoCo that involves a variety of MARL baselines.
arXiv Detail & Related papers (2021-10-06T14:17:09Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Deep Constrained Q-learning [15.582910645906145]
In many real world applications, reinforcement learning agents have to optimize multiple objectives while following certain rules or satisfying a set of constraints.
We propose Constrained Q-learning, a novel off-policy reinforcement learning framework restricting the action space directly in the Q-update to learn the optimal Q-function for the induced constrained MDP and the corresponding safe policy.
arXiv Detail & Related papers (2020-03-20T17:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.