論文の概要: Task Indicating Transformer for Task-conditional Dense Predictions
- arxiv url: http://arxiv.org/abs/2403.00327v1
- Date: Fri, 1 Mar 2024 07:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 17:54:49.591064
- Title: Task Indicating Transformer for Task-conditional Dense Predictions
- Title(参考訳): タスク条件密度予測のためのタスク指示トランス
- Authors: Yuxiang Lu, Shalayiding Sirejiding, Bayram Bayramli, Suizhi Huang, Yue
Ding, Hongtao Lu
- Abstract要約: この課題に対処するために,タスク表示変換(TIT)と呼ばれる新しいタスク条件フレームワークを導入する。
本手法では,行列分解によるタスク指示行列を組み込んだMix Task Adapterモジュールをトランスフォーマーブロック内に設計する。
また,タスク表示ベクトルとゲーティング機構を利用するタスクゲートデコーダモジュールを提案する。
- 参考スコア(独自算出の注目度): 16.92067246179703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task-conditional model is a distinctive stream for efficient multi-task
learning. Existing works encounter a critical limitation in learning
task-agnostic and task-specific representations, primarily due to shortcomings
in global context modeling arising from CNN-based architectures, as well as a
deficiency in multi-scale feature interaction within the decoder. In this
paper, we introduce a novel task-conditional framework called Task Indicating
Transformer (TIT) to tackle this challenge. Our approach designs a Mix Task
Adapter module within the transformer block, which incorporates a Task
Indicating Matrix through matrix decomposition, thereby enhancing long-range
dependency modeling and parameter-efficient feature adaptation by capturing
intra- and inter-task features. Moreover, we propose a Task Gate Decoder module
that harnesses a Task Indicating Vector and gating mechanism to facilitate
adaptive multi-scale feature refinement guided by task embeddings. Experiments
on two public multi-task dense prediction benchmarks, NYUD-v2 and
PASCAL-Context, demonstrate that our approach surpasses state-of-the-art
task-conditional methods.
- Abstract(参考訳): タスク条件モデルは、効率的なマルチタスク学習のための特異なストリームである。
既存の作業は、CNNベースのアーキテクチャから生じるグローバルコンテキストモデリングの欠点や、デコーダ内のマルチスケール機能相互作用の欠如によって、タスク非依存およびタスク固有表現の学習において重要な制限に直面している。
本稿では,タスク適応変換器(TIT)と呼ばれる新しいタスク条件フレームワークを紹介し,その課題に対処する。
本手法は,行列分解によるタスク指示行列を組み込んだ変圧器ブロック内のミックスタスクアダプタモジュールを設計し,タスク内およびタスク間機能をキャプチャすることで,長距離依存性モデリングとパラメータ効率の高い機能適応を実現する。
さらに,タスク指示ベクターとゲーティング機構を活用したタスクゲートデコーダモジュールを提案する。
2つの公開マルチタスク高密度予測ベンチマーク(NYUD-v2とPASCAL-Context)の実験は、我々のアプローチが最先端のタスク条件法を上回ることを示した。
関連論文リスト
- Instruction-Driven Fusion of Infrared-Visible Images: Tailoring for Diverse Downstream Tasks [9.415977819944246]
赤外線と可視光融合技術の主な価値は、下流のタスクに融合結果を適用することである。
既存の手法では、トレーニングの複雑さが増し、個々のタスクのパフォーマンスが著しく損なわれるといった課題に直面している。
本稿では,タスク指向適応制御(T-OAR)を提案する。
論文 参考訳(メタデータ) (2024-11-14T12:02:01Z) - Task-Aware Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [70.96345405979179]
オフラインマルチタスク強化学習(MTRL)の目的は、オンライン環境相互作用を必要とせず、多様なタスクに適用可能な統一されたポリシーを開発することである。
タスクの内容と複雑さの変化は、政策の定式化において重大な課題を引き起こします。
本稿では,各タスクに対するパラメータの最適な調和部分空間を特定するための新しいソリューションであるHarmoDT(Harmony Multi-Task Decision Transformer)を紹介する。
論文 参考訳(メタデータ) (2024-11-02T05:49:14Z) - InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene
Understanding [11.608682595506354]
マルチタスクシーン理解は、複数のシーン理解タスクを1つの多目的モデルで同時に予測できるモデルを設計することを目的としている。
従来の研究は通常、より局所的な方法でマルチタスクの特徴を処理するため、空間的にグローバルな相互作用とクロスタスクの相互作用を効果的に学習することはできない。
異なるタスクの空間的特徴間の相互タスク相互作用をグローバルな文脈でモデル化できる逆ピラミッドマルチタスク変換器を提案する。
論文 参考訳(メタデータ) (2023-06-08T00:28:22Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
Meta-Learning [12.215288736524268]
本稿では,モデルに依存しないメタラーニング(MAML)を複数のタスク分布から学習するための新しい手法ST-MAMLを提案する。
そこで本研究では,ST-MAMLが2つの画像分類タスク,1つの曲線評価ベンチマーク,1つの画像補完問題,および実世界の温度予測アプリケーションにおいて,最先端の映像分類タスクに適合または優れることを示す。
論文 参考訳(メタデータ) (2021-09-27T18:54:50Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
マルチタスクモデルを開発する際の2つの一般的な課題は、しばしば文献で見過ごされる。
まず、モデルを本質的に漸進的に可能にし、以前に学んだことを忘れずに新しいタスクから情報を継続的に取り入れる(インクリメンタルラーニング)。
第二に、タスク間の有害な相互作用を排除し、マルチタスク設定(タスク干渉)においてシングルタスクのパフォーマンスを著しく低下させることが示されている。
論文 参考訳(メタデータ) (2020-07-24T14:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。