論文の概要: TRUCE: Private Benchmarking to Prevent Contamination and Improve Comparative Evaluation of LLMs
- arxiv url: http://arxiv.org/abs/2403.00393v2
- Date: Mon, 24 Jun 2024 08:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 01:41:44.306738
- Title: TRUCE: Private Benchmarking to Prevent Contamination and Improve Comparative Evaluation of LLMs
- Title(参考訳): TRUCE: 汚染防止のためのプライベートベンチマークとLCMの比較評価の改善
- Authors: Tanmay Rajore, Nishanth Chandran, Sunayana Sitaram, Divya Gupta, Rahul Sharma, Kashish Mittal, Manohar Swaminathan,
- Abstract要約: ベンチマークは LLM を評価するためのデファクト標準であり、その速度、複製性、低コストのためである。
最近の研究によると、今日入手可能なオープンソースベンチマークの大部分は、LLMに汚染されたり、リークされたりしている。
テストデータセットをプライベートに保持し、モデルにテストデータを公開せずにモデルを評価するソリューションであるPrivate Benchmarkingを提案する。
- 参考スコア(独自算出の注目度): 12.839640915518443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benchmarking is the de-facto standard for evaluating LLMs, due to its speed, replicability and low cost. However, recent work has pointed out that the majority of the open source benchmarks available today have been contaminated or leaked into LLMs, meaning that LLMs have access to test data during pretraining and/or fine-tuning. This raises serious concerns about the validity of benchmarking studies conducted so far and the future of evaluation using benchmarks. To solve this problem, we propose Private Benchmarking, a solution where test datasets are kept private and models are evaluated without revealing the test data to the model. We describe various scenarios (depending on the trust placed on model owners or dataset owners), and present solutions to avoid data contamination using private benchmarking. For scenarios where the model weights need to be kept private, we describe solutions from confidential computing and cryptography that can aid in private benchmarking. We build an end-to-end system, TRUCE, that enables such private benchmarking showing that the overheads introduced to protect models and benchmark are negligible (in the case of confidential computing) and tractable (when cryptographic security is required). Finally, we also discuss solutions to the problem of benchmark dataset auditing, to ensure that private benchmarks are of sufficiently high quality.
- Abstract(参考訳): ベンチマークは LLM を評価するためのデファクト標準であり、その速度、複製性、低コストのためである。
しかし、最近の研究は、現在利用可能なオープンソースベンチマークの大部分がLLMに汚染またはリークされていることを指摘している。
これにより、これまでのベンチマーク研究の有効性と、ベンチマークを用いた評価の将来について、深刻な懸念が持ち上がる。
この問題を解決するために、テストデータセットをプライベートに保持し、モデルにテストデータを公開することなくモデルを評価するソリューションであるPrivate Benchmarkingを提案する。
モデル所有者やデータセット所有者の信頼度に依存する)様々なシナリオを説明し、プライベートベンチマークによるデータの汚染を避けるためのソリューションを提案する。
モデルウェイトをプライベートにしておく必要があるシナリオでは、秘密コンピューティングとプライベートベンチマークに役立つ暗号のソリューションを説明します。
我々は、モデルとベンチマークを保護するために導入されたオーバーヘッドが(機密コンピューティングの場合)無視可能で(暗号セキュリティが必要な場合)トラクタブルであることを示すプライベートベンチマークを可能にする、エンドツーエンドシステムであるTRUCEを構築している。
最後に、ベンチマークデータセット監査の問題に対する解決策について議論し、プライベートベンチマークが十分に高品質であることを保証する。
関連論文リスト
- PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
大規模言語モデル(LLM)は膨大な量のデータに基づいて訓練されることが知られており、意図的または故意によく使われるベンチマークのデータを含むことがある。
このインクルージョンは、モデルリーダーボードの不正な高いスコアにつながるが、現実のアプリケーションではパフォーマンスに失望する。
LLMのベンチマーク汚染を効果的に検出するPaired Confidence Significance TestingであるPaCoSTを紹介する。
論文 参考訳(メタデータ) (2024-06-26T13:12:40Z) - Inference-Time Decontamination: Reusing Leaked Benchmarks for Large Language Model Evaluation [61.350306618479365]
ベンチマークの漏洩は、大規模言語モデルの真のパフォーマンスの正確な評価を防ぐことができる。
この問題に対処するため,ITD(Inference-Time Decontamination)を提案する。
ITDは、GSM8Kで22.9%、MMLUで19.0%の膨張精度を低下させる。
論文 参考訳(メタデータ) (2024-06-20T04:35:59Z) - Privacy-Enhanced Database Synthesis for Benchmark Publishing [16.807486872855534]
差分プライバシーは、データ共有時のプライバシ保護の鍵となる方法となっているが、主に集約クエリや分類タスクにおけるエラーの最小化に焦点が当てられている。
本稿では,特にベンチマークのためのプライバシ保護データベースの作成について述べる。
PrivBenchは、データ分割とサンプリングにSPN(Sum-product Network)を使用して、プライバシを確保しながらデータ表現を強化する。
論文 参考訳(メタデータ) (2024-05-02T14:20:24Z) - Benchmarking Benchmark Leakage in Large Language Models [24.015208839742343]
本稿では,モデル予測精度をベンチマークで評価する2つの単純かつスケーラブルな指標であるPerplexityとN-gramの精度を利用した検出パイプラインを提案する。
テストセットの誤用さえも、トレーニングのかなりの例を明らかにし、潜在的に不公平な比較を行う。
ベンチマーク利用の明確なドキュメンテーションを促進するために,ベンチマーク透明性カードを提案する。
論文 参考訳(メタデータ) (2024-04-29T16:05:36Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Investigating Data Contamination in Modern Benchmarks for Large Language Models [27.479260572913724]
近年の観測は、膨らませたベンチマークスコアとLLMの実際の性能の相違を裏付けている。
我々は,オープンソースのLLMとプロプライエタリなLLMの両方に適した2つの手法を提案し,データ汚染について検討した。
いくつかの商用LCMは、様々なテストセットに欠けているオプションを驚くほど推測できる。
論文 参考訳(メタデータ) (2023-11-16T11:03:04Z) - Rethinking Benchmark and Contamination for Language Models with
Rephrased Samples [49.18977581962162]
大規模な言語モデルは、これまで人間が生成したすべてのデータに基づいて、ますます訓練されている。
多くの人は、事前トレーニングや微調整のデータセットが汚染される可能性があるとして、公開ベンチマークの信頼性を懸念している。
論文 参考訳(メタデータ) (2023-11-08T17:35:20Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - A Review of Benchmarks for Visual Defect Detection in the Manufacturing
Industry [63.52264764099532]
本稿では,既存のベンチマークを用いて,それらの特性とユースケースを比較し,公開する。
産業メトリクスの要求と試験手順についての研究は、研究されたベンチマークに提示され、適用されます。
論文 参考訳(メタデータ) (2023-05-05T07:44:23Z) - What Will it Take to Fix Benchmarking in Natural Language Understanding? [30.888416756627155]
我々は、NLUベンチマークが満たすべきと議論する4つの基準を定めている。
健全な評価エコシステムの復元には、ベンチマークデータセットの設計に大きな進歩が必要だ。
論文 参考訳(メタデータ) (2021-04-05T20:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。