論文の概要: List-Mode PET Image Reconstruction Using Dykstra-Like Splitting
- arxiv url: http://arxiv.org/abs/2403.00394v2
- Date: Fri, 19 Apr 2024 07:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 19:28:01.869726
- Title: List-Mode PET Image Reconstruction Using Dykstra-Like Splitting
- Title(参考訳): Dykstra-like Splitting を用いたリストモードPET画像再構成
- Authors: Kibo Ote, Fumio Hashimoto, Yuya Onishi, Yasuomi Ouchi,
- Abstract要約: 我々はDykstra-like splitting PET reconstruction (LM-MLDS)を提案する。
シミュレーション実験では、LM-MLDSは他の手法よりもノイズとコントラストのトレードオフ曲線が優れている。
臨床研究において、LM-MLDSは軸方向視野の端にある偽ホットスポットを除去し、頭頂部から小脳までを覆うスライスの画像品質を改善した。
- 参考スコア(独自算出の注目度): 2.3999111269325266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convergence of the block iterative method in image reconstruction for positron emission tomography (PET) requires careful control of relaxation parameters, which is a challenging task. The automatic determination of relaxation parameters for list-mode reconstructions also remains challenging. Therefore, a different approach would be desirable. In this study, we propose a list-mode maximum likelihood Dykstra-like splitting PET reconstruction (LM-MLDS). LM-MLDS converges the list-mode block iterative method by adding the distance from an initial image as a penalty term into an objective function. LM-MLDS takes a two-step approach because its performance depends on the quality of the initial image. The first step uses a uniform image as the initial image, and then the second step uses a reconstructed image after one main iteration as the initial image. In a simulation study, LM-MLDS provided a better tradeoff curve between noise and contrast than the other methods. In a clinical study, LM-MLDS removed the false hotspots at the edge of the axial field of view and improved the image quality of slices covering the top of the head to the cerebellum. List-mode proximal splitting reconstruction is useful not only for optimizing nondifferential functions but also for converging block iterative methods without controlling relaxation parameters.
- Abstract(参考訳): ポジトロン・エミッション・トモグラフィ(PET)画像再構成におけるブロック反復法の収束性は緩和パラメータを慎重に制御する必要があるが、これは難しい課題である。
リストモード再構築における緩和パラメータの自動決定も困難である。
したがって、異なるアプローチが望ましい。
本研究では,Dykstra-like splitting PET reconstruction (LM-MLDS)を提案する。
LM-MLDSは、初期画像からペナルティ項としての距離を目的関数に付加することにより、リストモードブロック反復法を収束させる。
LM-MLDSは、初期画像の品質に依存するため、2段階のアプローチをとる。
第1ステップは、初期画像として一様画像を使用し、その後、第2ステップは、1つのメインイテレーション後の再構成イメージを初期画像として使用する。
シミュレーション実験では、LM-MLDSは他の手法よりもノイズとコントラストのトレードオフ曲線が優れている。
臨床研究において、LM-MLDSは軸方向視野の端にある偽ホットスポットを除去し、頭頂部から小脳までを覆うスライスの画像品質を改善した。
リストモード近位分割再構成は、非微分関数の最適化だけでなく、緩和パラメータを制御せずにブロック反復法の収束にも有用である。
関連論文リスト
- vSHARP: variable Splitting Half-quadratic Admm algorithm for Reconstruction of inverse-Problems [7.043932618116216]
vSHARP (variable Splitting Half-quadratic ADMM algorithm for Reconstruction of inverse Problems) は、医学的イメージング(MI)における不適切な逆問題の解法である。
データ一貫性のために、vSHARPは画像領域で微分勾配降下過程をアンロールし、一方、U-NetアーキテクチャのようなDLベースのデノイザは画質を高めるために適用される。
我々の最先端手法との比較分析は,これらの応用におけるvSHARPの優れた性能を示すものである。
論文 参考訳(メタデータ) (2023-09-18T17:26:22Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
浅い層から低レベルの特徴を明示的に利用して画素再構成を支援する手法を提案する。
私たちの知る限りでは、等方的アーキテクチャのためのマルチレベル特徴融合を体系的に研究するのは、私たちは初めてです。
提案手法は, 微調整では1.2%, 線形探索では2.8%, セマンティックセグメンテーションでは2.6%など, 大幅な性能向上をもたらす。
論文 参考訳(メタデータ) (2023-08-01T03:44:56Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Learned Alternating Minimization Algorithm for Dual-domain Sparse-View
CT Reconstruction [6.353014736326698]
デュアルドメインビューCT画像再構成のための新しい学習最小化アルゴリズム(LAMA)を提案する。
LAMAは信頼性の高い再構築のために確実に収束している。
論文 参考訳(メタデータ) (2023-06-05T07:29:18Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
圧縮画像と物理マスクからパラメータを推定し,これらのパラメータを用いて各イテレーションを制御する,DAUF(Degradation-Aware Unfolding Framework)を提案する。
HST を DAUF に接続することにより,HSI 再構成のための変換器の深部展開法であるデグレーション・アウェア・アンフォールディング・ハーフシャッフル変換器 (DAUHST) を確立した。
論文 参考訳(メタデータ) (2022-05-20T11:37:44Z) - List-Mode PET Image Reconstruction Using Deep Image Prior [3.6427817678422016]
PET(List-mode positron emission tomography)画像再構成はPETスキャナーにとって重要なツールである。
深層学習はPET画像再構成の品質を高める1つの方法である。
本研究では,Deep image priorと呼ばれる教師なしCNNを用いた新しいPET画像再構成手法を提案する。
論文 参考訳(メタデータ) (2022-04-28T10:44:33Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
畳み込みニューラルネットワーク(CNN)は近年,PET画像再構成において顕著な性能を発揮している。
深層画像前処理を組み込んだ非教師なし直接PET画像再構成手法を提案する。
提案手法は,非教師なしPET画像再構成を実現するために,損失関数付き前方投影モデルを組み込んだ。
論文 参考訳(メタデータ) (2021-09-02T08:07:58Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
回帰に基づく手法は最近、単眼画像からヒトのメッシュを再構成する有望な結果を示した。
パラメータの小さな偏差は、推定メッシュと画像のエビデンスの間に顕著な不一致を引き起こす可能性がある。
本稿では,特徴ピラミッドを活用し,予測パラメータを補正するために,ピラミッドメッシュアライメントフィードバック(pymaf)ループを提案する。
論文 参考訳(メタデータ) (2021-03-30T17:07:49Z) - A deep primal-dual proximal network for image restoration [8.797434238081372]
我々は、プリミティブ・デュアル・イテレーションから構築されたディープPDNetというディープネットワークを設計し、前もって分析を行い、標準的なペナル化可能性の最小化を図った。
フルラーニング」と「パートラーニング」の2つの異なる学習戦略が提案され、第1は最も効率的な数値である。
以上の結果から,提案したDeepPDNetは,MNISTと,より複雑なBSD68,BSD100,SET14データセットにおいて,画像復元と単一画像超解像処理に優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-02T08:29:52Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
そこで我々は,厳密なウェーブレットフレーム変換と形態的再構成操作を組み込むことで,Kulback-Leibler (KL) 発散に基づくFuzzy C-Means (FCM) アルゴリズムを考案した。
提案アルゴリズムはよく機能し、他の比較アルゴリズムよりもセグメンテーション性能が優れている。
論文 参考訳(メタデータ) (2020-02-21T05:19:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。