Attacking Delay-based PUFs with Minimal Adversary Model
- URL: http://arxiv.org/abs/2403.00464v1
- Date: Fri, 1 Mar 2024 11:35:39 GMT
- Title: Attacking Delay-based PUFs with Minimal Adversary Model
- Authors: Hongming Fei, Owen Millwood, Prosanta Gope, Jack Miskelly, Biplab Sikdar,
- Abstract summary: Physically Unclonable Functions (PUFs) provide a streamlined solution for lightweight device authentication.
Delay-based Arbiter PUFs, with their ease of implementation and vast challenge space, have received significant attention.
Research is polarized between developing modelling-resistant PUFs and devising machine learning attacks against them.
- Score: 13.714598539443513
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Physically Unclonable Functions (PUFs) provide a streamlined solution for lightweight device authentication. Delay-based Arbiter PUFs, with their ease of implementation and vast challenge space, have received significant attention; however, they are not immune to modelling attacks that exploit correlations between their inputs and outputs. Research is therefore polarized between developing modelling-resistant PUFs and devising machine learning attacks against them. This dichotomy often results in exaggerated concerns and overconfidence in PUF security, primarily because there lacks a universal tool to gauge a PUF's security. In many scenarios, attacks require additional information, such as PUF type or configuration parameters. Alarmingly, new PUFs are often branded `secure' if they lack a specific attack model upon introduction. To impartially assess the security of delay-based PUFs, we present a generic framework featuring a Mixture-of-PUF-Experts (MoPE) structure for mounting attacks on various PUFs with minimal adversarial knowledge, which provides a way to compare their performance fairly and impartially. We demonstrate the capability of our model to attack different PUF types, including the first successful attack on Heterogeneous Feed-Forward PUFs using only a reasonable amount of challenges and responses. We propose an extension version of our model, a Multi-gate Mixture-of-PUF-Experts (MMoPE) structure, facilitating multi-task learning across diverse PUFs to recognise commonalities across PUF designs. This allows a streamlining of training periods for attacking multiple PUFs simultaneously. We conclude by showcasing the potent performance of MoPE and MMoPE across a spectrum of PUF types, employing simulated, real-world unbiased, and biased data sets for analysis.
Related papers
- A lightweight PUF-based authentication protocol [1.9336815376402723]
Physical Unclonable Functions (PUFs) have the potential as hardware primitives for implementing lightweight authentication protocols.
APUF is probably the most lightweight strong PUF capable of generating exponentially many challenge-response pairs (CRPs)
We propose a co-design of PUF and protocol, where the PUF consists of an APUF and a zero-transistor interface that obfuscates the true challenge bits fed to the PUF.
arXiv Detail & Related papers (2024-05-21T18:32:13Z) - Designing a Photonic Physically Unclonable Function Having Resilience to Machine Learning Attacks [2.369276238599885]
We describe a computational PUF model for producing datasets required for training machine learning (ML) attacks.
We find that the modeled PUF generates distributions that resemble uniform white noise.
Preliminary analysis suggests that the PUF exhibits similar resilience to generative adversarial networks.
arXiv Detail & Related papers (2024-04-03T03:58:21Z) - PhenoAuth: A Novel PUF-Phenotype-based Authentication Protocol for IoT Devices [9.608432807038083]
This work proposes a full noise-tolerant authentication protocol based on the PUF Phenotype concept.
It demonstrates mutual authentication and forward secrecy in a setting suitable for device-to-device communication.
arXiv Detail & Related papers (2024-03-06T06:04:32Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
Performance unfairness among variables widely exists in multivariate time series (MTS) forecasting models.
We propose a novel framework, named FairFor, for fairness-aware MTS forecasting.
arXiv Detail & Related papers (2023-01-27T04:54:12Z) - PUF-Phenotype: A Robust and Noise-Resilient Approach to Aid
Intra-Group-based Authentication with DRAM-PUFs Using Machine Learning [10.445311342905118]
We propose a classification system using Machine Learning (ML) to accurately identify the origin of noisy memory derived (DRAM) PUF responses.
We achieve up to 98% classification accuracy using a modified deep convolutional neural network (CNN) for feature extraction.
arXiv Detail & Related papers (2022-07-11T08:13:08Z) - A New Security Boundary of Component Differentially Challenged XOR PUFs
Against Machine Learning Modeling Attacks [0.0]
The XOR Arbiter PUF (XOR PUF or XPUF) is an intensively studied PUF invented to improve the security of the Arbiter PUF.
Recently, highly powerful machine learning attack methods were discovered and were able to easily break large-sized XPUFs.
In this paper, the two current most powerful two machine learning methods for attacking XPUFs are adapted by fine-tuning the parameters of the two methods for CDC-XPUFs.
arXiv Detail & Related papers (2022-06-02T21:51:39Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - Is Independent Learning All You Need in the StarCraft Multi-Agent
Challenge? [100.48692829396778]
Independent PPO (IPPO) is a form of independent learning in which each agent simply estimates its local value function.
IPPO's strong performance may be due to its robustness to some forms of environment non-stationarity.
arXiv Detail & Related papers (2020-11-18T20:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.