Advancing Additive Manufacturing through Deep Learning: A Comprehensive Review of Current Progress and Future Challenges
- URL: http://arxiv.org/abs/2403.00669v2
- Date: Mon, 23 Dec 2024 19:05:16 GMT
- Title: Advancing Additive Manufacturing through Deep Learning: A Comprehensive Review of Current Progress and Future Challenges
- Authors: Amirul Islam Saimon, Emmanuel Yangue, Xiaowei Yue, Zhenyu James Kong, Chenang Liu,
- Abstract summary: This paper presents the first comprehensive literature review of deep learning (DL) applications in additive manufacturing (AM)
It addresses the need for a thorough analysis in this rapidly growing yet scattered field, aiming to bring together existing knowledge and encourage further development.
- Score: 5.048134681658527
- License:
- Abstract: This paper presents the first comprehensive literature review of deep learning (DL) applications in additive manufacturing (AM). It addresses the need for a thorough analysis in this rapidly growing yet scattered field, aiming to bring together existing knowledge and encourage further development. Our research questions cover three major areas of AM: (i) design for AM, (ii) AM modeling, and (iii) monitoring and control in AM. We use a step-by-step approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to select papers from Scopus and Web of Science databases, aligning with our research questions. We include only those papers that implement DL across seven major AM categories - binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, and vat photopolymerization. Our analysis reveals a trend towards using deep generative models, such as generative adversarial networks, for generative design in AM. It also highlights an increasing effort to incorporate process physics into DL models to improve AM process modeling and reduce data requirements. Additionally, there is growing interest in using 3D point cloud data for AM process monitoring, alongside traditional 1D and 2D formats. Finally, this paper summarizes the current challenges and recommends some of the promising opportunities in this domain for further investigation with a special focus on (i) generalizing DL models for a wide range of geometry types, (ii) managing uncertainties both in AM data and DL models, (iii) overcoming limited, imbalanced, and noisy AM data issues by incorporating deep generative models, and (iv) unveiling the potential of interpretable DL for AM.
Related papers
- A Survey on Diffusion Models for Anomaly Detection [41.22298168457618]
Diffusion models (DMs) have emerged as a powerful class of generative AI models.
DMAD offers promising solutions for identifying deviations in increasingly complex and high-dimensional data.
arXiv Detail & Related papers (2025-01-20T12:06:54Z) - Trends, Challenges, and Future Directions in Deep Learning for Glaucoma: A Systematic Review [0.2940464448991482]
We examine the latest advances in glaucoma detection through Deep Learning (DL) algorithms using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
This study focuses on three aspects of DL-based glaucoma detection frameworks: input data modalities, processing strategies, and model architectures and applications.
arXiv Detail & Related papers (2024-11-07T23:35:05Z) - RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
We propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR.
Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer.
Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness.
arXiv Detail & Related papers (2024-10-02T16:47:55Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - A Survey on Data Augmentation in Large Model Era [16.05117556207015]
Large models, encompassing large language and diffusion models, have shown exceptional promise in approximating human-level intelligence.
With continuous updates to these models, the existing reservoir of high-quality data may soon be depleted.
This paper offers an exhaustive review of large model-driven data augmentation methods.
arXiv Detail & Related papers (2024-01-27T14:19:33Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.
The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.
This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - A Comprehensive Study on Temporal Modeling for Online Action Detection [50.558313106389335]
Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years.
This paper aims to provide a comprehensive study on temporal modeling for OAD including four meta types of temporal modeling methods.
We present several hybrid temporal modeling methods, which outperform the recent state-of-the-art methods with sizable margins on THUMOS-14 and TVSeries.
arXiv Detail & Related papers (2020-01-21T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.