Scalable Learning of Item Response Theory Models
- URL: http://arxiv.org/abs/2403.00680v2
- Date: Thu, 15 Aug 2024 11:30:39 GMT
- Title: Scalable Learning of Item Response Theory Models
- Authors: Susanne Frick, Amer Krivošija, Alexander Munteanu,
- Abstract summary: Item Response Theory (IRT) models aim to assess latent abilities of $n$ examinees along with latent difficulty characteristics of $m$ test items from categorical data.
We leverage the similarity of these models to logistic regression, which can be approximated accurately using small weighted subsets called coresets.
- Score: 48.91265296134559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Item Response Theory (IRT) models aim to assess latent abilities of $n$ examinees along with latent difficulty characteristics of $m$ test items from categorical data that indicates the quality of their corresponding answers. Classical psychometric assessments are based on a relatively small number of examinees and items, say a class of $200$ students solving an exam comprising $10$ problems. More recent global large scale assessments such as PISA, or internet studies, may lead to significantly increased numbers of participants. Additionally, in the context of Machine Learning where algorithms take the role of examinees and data analysis problems take the role of items, both $n$ and $m$ may become very large, challenging the efficiency and scalability of computations. To learn the latent variables in IRT models from large data, we leverage the similarity of these models to logistic regression, which can be approximated accurately using small weighted subsets called coresets. We develop coresets for their use in alternating IRT training algorithms, facilitating scalable learning from large data.
Related papers
- Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
We shed new light on the traditional nearest neighbors algorithm from the perspective of information theory.
We propose a robust and interpretable framework for tasks such as classification, regression, density estimation, and anomaly detection using a single model.
Our work showcases the architecture's versatility by achieving state-of-the-art results in classification and anomaly detection.
arXiv Detail & Related papers (2023-11-17T00:35:38Z) - Latent class analysis with weighted responses [0.0]
We propose a novel generative model, the weighted latent class model (WLCM)
Our model allows data's response matrix to be generated from an arbitrary distribution with a latent class structure.
We investigate the identifiability of the model and propose an efficient algorithm for estimating the latent classes and other model parameters.
arXiv Detail & Related papers (2023-10-17T04:16:20Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Linear Algorithms for Nonparametric Multiclass Probability Estimation [0.0]
Support Vector Machines (wSVMs) have been developed to estimate class probabilities through ensemble learning.
We propose two new learning schemes, the baseline learning and the One-vs. All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy.
arXiv Detail & Related papers (2022-05-25T03:15:22Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Modeling Item Response Theory with Stochastic Variational Inference [8.369065078321215]
We introduce a variational Bayesian inference algorithm for Item Response Theory (IRT)
Applying this method to five large-scale item response datasets yields higher log likelihoods and higher accuracy in imputing missing data.
The algorithm implementation is open-source, and easily usable.
arXiv Detail & Related papers (2021-08-26T05:00:27Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Unravelling Small Sample Size Problems in the Deep Learning World [69.82853912238173]
We first present a review of deep learning algorithms for small sample size problems in which the algorithms are segregated according to the space in which they operate.
Secondly, we present Dynamic Attention Pooling approach which focuses on extracting global information from the most discriminative sub-part of the feature map.
arXiv Detail & Related papers (2020-08-08T13:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.