Comprehensive Benchmarking of Machine Learning Methods for Risk Prediction Modelling from Large-Scale Survival Data: A UK Biobank Study
- URL: http://arxiv.org/abs/2503.08870v1
- Date: Tue, 11 Mar 2025 20:27:20 GMT
- Title: Comprehensive Benchmarking of Machine Learning Methods for Risk Prediction Modelling from Large-Scale Survival Data: A UK Biobank Study
- Authors: Rafael R. Oexner, Robin Schmitt, Hyunchan Ahn, Ravi A. Shah, Anna Zoccarato, Konstantinos Theofilatos, Ajay M. Shah,
- Abstract summary: Large-scale prospective cohort studies and a diverse toolkit of available machine learning (ML) algorithms have facilitated such survival task efforts.<n>We sought to benchmark eight distinct survival task implementations, ranging from linear to deep learning (DL) models.<n>We assessed how well different architectures scale with sample sizes ranging from n = 5,000 to n = 250,000 individuals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive modelling is vital to guide preventive efforts. Whilst large-scale prospective cohort studies and a diverse toolkit of available machine learning (ML) algorithms have facilitated such survival task efforts, choosing the best-performing algorithm remains challenging. Benchmarking studies to date focus on relatively small-scale datasets and it is unclear how well such findings translate to large datasets that combine omics and clinical features. We sought to benchmark eight distinct survival task implementations, ranging from linear to deep learning (DL) models, within the large-scale prospective cohort study UK Biobank (UKB). We compared discrimination and computational requirements across heterogenous predictor matrices and endpoints. Finally, we assessed how well different architectures scale with sample sizes ranging from n = 5,000 to n = 250,000 individuals. Our results show that discriminative performance across a multitude of metrices is dependent on endpoint frequency and predictor matrix properties, with very robust performance of (penalised) COX Proportional Hazards (COX-PH) models. Of note, there are certain scenarios which favour more complex frameworks, specifically if working with larger numbers of observations and relatively simple predictor matrices. The observed computational requirements were vastly different, and we provide solutions in cases where current implementations were impracticable. In conclusion, this work delineates how optimal model choice is dependent on a variety of factors, including sample size, endpoint frequency and predictor matrix properties, thus constituting an informative resource for researchers working on similar datasets. Furthermore, we showcase how linear models still display a highly effective and scalable platform to perform risk modelling at scale and suggest that those are reported alongside non-linear ML models.
Related papers
- Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training [1.3980986259786223]
We show that dataset diversity can impact the performance of vision models.
Our study shows positive correlations between test set accuracy and data diversity.
These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance.
arXiv Detail & Related papers (2025-01-15T00:56:59Z) - Are Large Language Models Useful for Time Series Data Analysis? [3.44393516559102]
Time series data plays a critical role across diverse domains such as healthcare, energy, and finance.
This study investigates whether large language models (LLMs) are effective for time series data analysis.
arXiv Detail & Related papers (2024-12-16T02:47:44Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
This research looked into the use of machine learning algorithms to fill in the gaps in categorical datasets.
The emphasis was on ensemble models constructed using the Error Correction Output Codes framework.
Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data.
arXiv Detail & Related papers (2023-06-10T03:29:48Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Active Learning in CNNs via Expected Improvement Maximization [2.0305676256390934]
"Dropout-based IMprOvementS" (DEIMOS) is a flexible and computationally-efficient approach to active learning.
Our results demonstrate that DEIMOS outperforms several existing baselines across multiple regression and classification tasks.
arXiv Detail & Related papers (2020-11-27T22:06:52Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.