Toward Autonomous Cooperation in Heterogeneous Nanosatellite
Constellations Using Dynamic Graph Neural Networks
- URL: http://arxiv.org/abs/2403.00692v2
- Date: Mon, 4 Mar 2024 04:47:46 GMT
- Title: Toward Autonomous Cooperation in Heterogeneous Nanosatellite
Constellations Using Dynamic Graph Neural Networks
- Authors: Guillem Casadesus-Vila, Joan-Adria Ruiz-de-Azua, Eduard Alarcon
- Abstract summary: The paper proposes a novel approach to overcome the challenges by modeling the constellations and CP as dynamic networks.
The trained neural network can predict the network delay with a mean absolute error of 3.6 minutes.
Simulation results show that the proposed method can successfully design a contact plan for large satellite networks, improving the delay by 29.1%, similar to a traditional approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The upcoming landscape of Earth Observation missions will defined by
networked heterogeneous nanosatellite constellations required to meet strict
mission requirements, such as revisit times and spatial resolution. However,
scheduling satellite communications in these satellite networks through
efficiently creating a global satellite Contact Plan (CP) is a complex task,
with current solutions requiring ground-based coordination or being limited by
onboard computational resources. The paper proposes a novel approach to
overcome these challenges by modeling the constellations and CP as dynamic
networks and employing graph-based techniques. The proposed method utilizes a
state-of-the-art dynamic graph neural network to evaluate the performance of a
given CP and update it using a heuristic algorithm based on simulated
annealing. The trained neural network can predict the network delay with a mean
absolute error of 3.6 minutes. Simulation results show that the proposed method
can successfully design a contact plan for large satellite networks, improving
the delay by 29.1%, similar to a traditional approach, while performing the
objective evaluations 20x faster.
Related papers
- A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks.
The results of simulation experiments show that the DSGA can effectively solve the SGNPFM problem.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
We propose a hierarchical learning and computing framework to provide global aggregation services for locally trained models on ground IoT devices.
We formulate a network energy problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem.
We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph.
arXiv Detail & Related papers (2024-08-26T09:05:43Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Entanglement Distribution in Satellite-based Dynamic Quantum Networks [10.445684354981847]
Low Earth Orbit (LEO) satellites present a compelling opportunity for the establishment of a global quantum information network.
Existing works often do not account for satellite movement over time when distributing entanglement and/or often do not permit entanglement distribution along inter-satellite links.
We first define a system model which considers both satellite movement over time and inter-satellite links.
arXiv Detail & Related papers (2023-06-15T06:56:26Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - A Maximum Independent Set Method for Scheduling Earth Observing
Satellite Constellations [41.013477422930755]
This paper introduces a new approach for solving the satellite scheduling problem by generating an infeasibility-based graph representation of the problem.
It is tested on a scenarios of up to 10,000 requested imaging locations for the Skysat constellation of optical satellites as well as simulated constellations of up to 24 satellites.
arXiv Detail & Related papers (2020-08-15T19:32:21Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
Earth observation resources are becoming increasingly indispensable in disaster relief, damage assessment and related domains.
Many unpredicted factors, such as the change of observation task requirements, to the occurring of bad weather and resource failures, may cause the scheduled observation scheme to become infeasible.
A bottom-up distributed coordinated framework together with an improved contract net are proposed to facilitate the dynamic task replanning for heterogeneous Earth observation resources.
arXiv Detail & Related papers (2020-07-13T03:51:08Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.