A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode
- URL: http://arxiv.org/abs/2408.16300v2
- Date: Sat, 23 Nov 2024 15:08:06 GMT
- Title: A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode
- Authors: Yingying Ren, Qiuli Li, Yangyang Guo, Witold Pedrycz, Lining Xing, Anfeng Liu, Yanjie Song,
- Abstract summary: The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
- Score: 53.71516191515285
- License:
- Abstract: With the rapid development of the satellite industry, the information transmission network based on communication satellites has gradually become a major and important part of the future satellite ground integration network. However, the low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system and needs to be solved urgently. Effectively planning the task of satellite ground networking by reasonably scheduling resources is crucial for the efficient transmission of task data. In this paper, we hope to provide a task execution scheme that maximizes the profit of the networking task for satellite ground network planning considering feeding mode (SGNPFM). To solve the SGNPFM problem, a mixed-integer planning model with the objective of maximizing the gain of the link-building task is constructed, which considers various constraints of the satellite in the feed-switching mode. Based on the problem characteristics, we propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks. To obtain more high-quality solutions, different similarity evaluation methods are designed to assist the algorithm in intelligently screening individuals.
Related papers
- Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Toward Autonomous Cooperation in Heterogeneous Nanosatellite
Constellations Using Dynamic Graph Neural Networks [0.0]
The paper proposes a novel approach to overcome the challenges by modeling the constellations and CP as dynamic networks.
The trained neural network can predict the network delay with a mean absolute error of 3.6 minutes.
Simulation results show that the proposed method can successfully design a contact plan for large satellite networks, improving the delay by 29.1%, similar to a traditional approach.
arXiv Detail & Related papers (2024-03-01T17:26:02Z) - Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks [15.916368067018169]
We propose the deployment of LEO satellite edge in an integrated satellite-terrestrial networks (ISTN) structure to support textitsecurity-sensitive computing task offloading.
We model the task allocation and offloading order problem as a joint optimization problem to minimize task offloading delay, energy consumption, and the number of attacks while satisfying reliability constraints.
arXiv Detail & Related papers (2024-01-20T07:29:55Z) - Optimal Entanglement Distribution using Satellite Based Quantum Networks [16.797145253236607]
Satellite quantum communication can distribute high quality quantum entanglements among ground stations that are geographically separated at very long distances.
This work focuses on optimal distribution of bipartite entanglements to a set of pair of ground stations using a constellation of orbiting satellites.
arXiv Detail & Related papers (2022-05-24T20:32:00Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
Earth observation resources are becoming increasingly indispensable in disaster relief, damage assessment and related domains.
Many unpredicted factors, such as the change of observation task requirements, to the occurring of bad weather and resource failures, may cause the scheduled observation scheme to become infeasible.
A bottom-up distributed coordinated framework together with an improved contract net are proposed to facilitate the dynamic task replanning for heterogeneous Earth observation resources.
arXiv Detail & Related papers (2020-07-13T03:51:08Z) - Mission schedule of agile satellites based on Proximal Policy
Optimization Algorithm [0.0]
Mission schedule of satellites is an important part of space operation nowadays.
This paper incorporate reinforcement learning algorithms into it and find a new way to describe the problem.
arXiv Detail & Related papers (2020-07-05T14:28:44Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.