Self-Retrieval: End-to-End Information Retrieval with One Large Language Model
- URL: http://arxiv.org/abs/2403.00801v2
- Date: Mon, 04 Nov 2024 03:07:30 GMT
- Title: Self-Retrieval: End-to-End Information Retrieval with One Large Language Model
- Authors: Qiaoyu Tang, Jiawei Chen, Zhuoqun Li, Bowen Yu, Yaojie Lu, Cheng Fu, Haiyang Yu, Hongyu Lin, Fei Huang, Ben He, Xianpei Han, Le Sun, Yongbin Li,
- Abstract summary: We introduce Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture.
Self-Retrieval internalizes the retrieval corpus through self-supervised learning, transforms the retrieval process into sequential passage generation, and performs relevance assessment for reranking.
- Score: 97.71181484082663
- License:
- Abstract: The rise of large language models (LLMs) has significantly transformed both the construction and application of information retrieval (IR) systems. However, current interactions between IR systems and LLMs remain limited, with LLMs merely serving as part of components within IR systems, and IR systems being constructed independently of LLMs. This separated architecture restricts knowledge sharing and deep collaboration between them. In this paper, we introduce Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture. Self-Retrieval unifies all essential IR functions within a single LLM, leveraging the inherent capabilities of LLMs throughout the IR process. Specifically, Self-Retrieval internalizes the retrieval corpus through self-supervised learning, transforms the retrieval process into sequential passage generation, and performs relevance assessment for reranking. Experimental results demonstrate that Self-Retrieval not only outperforms existing retrieval approaches by a significant margin, but also substantially enhances the performance of LLM-driven downstream applications like retrieval-augmented generation.
Related papers
- Learning vs Retrieval: The Role of In-Context Examples in Regression with LLMs [18.983753573277596]
We propose a framework for evaluating in-context learning mechanisms, which we claim are a combination of retrieving internal knowledge and learning from in-context examples.
First, we show that LLMs can perform regression on real-world datasets and then design experiments to measure the extent to which the LLM retrieves its internal knowledge.
We provide an in-depth analysis of the degrees to which these mechanisms are triggered depending on various factors.
arXiv Detail & Related papers (2024-09-06T14:46:37Z) - IM-RAG: Multi-Round Retrieval-Augmented Generation Through Learning Inner Monologues [10.280113107290067]
The IM-RAG approach integrates Information Retrieval systems with Large Language Models (LLMs) to support multi-round RAG.
The entire IM process is optimized via Reinforcement Learning (RL) where a Progress Tracker is incorporated to provide mid-step rewards.
The results show that our approach achieves state-of-the-art (SOTA) performance while providing high flexibility in integrating IR modules.
arXiv Detail & Related papers (2024-05-15T12:41:20Z) - Recall, Retrieve and Reason: Towards Better In-Context Relation Extraction [11.535892987373947]
Relation extraction (RE) aims to identify relations between entities mentioned in texts.
Large language models (LLMs) have demonstrated impressive in-context learning abilities in various tasks.
LLMs suffer from poor performances compared to most supervised fine-tuned RE methods.
arXiv Detail & Related papers (2024-04-27T07:12:52Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Information Retrieval Meets Large Language Models: A Strategic Report
from Chinese IR Community [180.28262433004113]
Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference.
LLMs and humans form a new technical paradigm that is more powerful for information seeking.
To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023.
arXiv Detail & Related papers (2023-07-19T05:23:43Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.