Enhancing Cloud-Based Large Language Model Processing with Elasticsearch
and Transformer Models
- URL: http://arxiv.org/abs/2403.00807v1
- Date: Sat, 24 Feb 2024 12:31:22 GMT
- Title: Enhancing Cloud-Based Large Language Model Processing with Elasticsearch
and Transformer Models
- Authors: Chunhe Ni, Jiang Wu, Hongbo Wang, Wenran Lu, Chenwei Zhang
- Abstract summary: Large Language Models (LLMs) are a class of generative AI models built using the Transformer network.
LLMs are capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language.
Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance.
- Score: 17.09116903102371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are a class of generative AI models built using
the Transformer network, capable of leveraging vast datasets to identify,
summarize, translate, predict, and generate language. LLMs promise to
revolutionize society, yet training these foundational models poses immense
challenges. Semantic vector search within large language models is a potent
technique that can significantly enhance search result accuracy and relevance.
Unlike traditional keyword-based search methods, semantic search utilizes the
meaning and context of words to grasp the intent behind queries and deliver
more precise outcomes. Elasticsearch emerges as one of the most popular tools
for implementing semantic search an exceptionally scalable and robust search
engine designed for indexing and searching extensive datasets. In this article,
we delve into the fundamentals of semantic search and explore how to harness
Elasticsearch and Transformer models to bolster large language model processing
paradigms. We gain a comprehensive understanding of semantic search principles
and acquire practical skills for implementing semantic search in real-world
model application scenarios.
Related papers
- Scholar Name Disambiguation with Search-enhanced LLM Across Language [0.2302001830524133]
This paper proposes a novel approach by leveraging search-enhanced language models across multiple languages to improve name disambiguation.
By utilizing the powerful query rewriting, intent recognition, and data indexing capabilities of search engines, our method can gather richer information for distinguishing between entities and extracting profiles.
arXiv Detail & Related papers (2024-11-26T04:39:46Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
We propose VectorSearch, which leverages advanced algorithms, embeddings, and indexing techniques for refined retrieval.
By utilizing innovative multi-vector search operations and encoding searches with advanced language models, our approach significantly improves retrieval accuracy.
Experiments on real-world datasets show that VectorSearch outperforms baseline metrics.
arXiv Detail & Related papers (2024-09-25T21:58:08Z) - Hybrid Semantic Search: Unveiling User Intent Beyond Keywords [0.0]
This paper addresses the limitations of traditional keyword-based search in understanding user intent.
It introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models.
arXiv Detail & Related papers (2024-08-17T16:04:31Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
We present a deep learning approach to build a search system for large clinical vocabularies.
We propose a Triplet-BERT model and a method that generates training data based on semantic training data.
The model is evaluated using five real benchmark data sets and the results show that our approach achieves high results on both free text to concept and concept to searching concept vocabularies.
arXiv Detail & Related papers (2022-01-01T05:15:42Z) - Boosting Search Engines with Interactive Agents [25.89284695491093]
This paper presents first steps in designing agents that learn meta-strategies for contextual query refinements.
Agents are empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results.
arXiv Detail & Related papers (2021-09-01T13:11:57Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
We show that cognitive reformulation patterns that mimic user search behaviour are highlighted.
We formalize the application of these patterns by considering a query conceptual representation.
A genetic algorithm-based weighting process allows placing emphasis on terms according to their conceptual role-type.
arXiv Detail & Related papers (2020-04-21T14:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.