Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
- URL: http://arxiv.org/abs/2408.09236v3
- Date: Fri, 6 Sep 2024 13:34:16 GMT
- Title: Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
- Authors: Aman Ahluwalia, Bishwajit Sutradhar, Karishma Ghosh, Indrapal Yadav, Arpan Sheetal, Prashant Patil,
- Abstract summary: This paper addresses the limitations of traditional keyword-based search in understanding user intent.
It introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
Related papers
- VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
We propose VectorSearch, which leverages advanced algorithms, embeddings, and indexing techniques for refined retrieval.
By utilizing innovative multi-vector search operations and encoding searches with advanced language models, our approach significantly improves retrieval accuracy.
Experiments on real-world datasets show that VectorSearch outperforms baseline metrics.
arXiv Detail & Related papers (2024-09-25T21:58:08Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Generative Retrieval as Multi-Vector Dense Retrieval [71.75503049199897]
Generative retrieval generates identifiers of relevant documents in an end-to-end manner.
Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval.
We show that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document.
arXiv Detail & Related papers (2024-03-31T13:29:43Z) - LIST: Learning to Index Spatio-Textual Data for Embedding based Spatial Keyword Queries [53.843367588870585]
List K-kNN spatial keyword queries (TkQs) return a list of objects based on a ranking function that considers both spatial and textual relevance.
There are two key challenges in building an effective and efficient index, i.e., the absence of high-quality labels and the unbalanced results.
We develop a novel pseudolabel generation technique to address the two challenges.
arXiv Detail & Related papers (2024-03-12T05:32:33Z) - Enhancing Cloud-Based Large Language Model Processing with Elasticsearch
and Transformer Models [17.09116903102371]
Large Language Models (LLMs) are a class of generative AI models built using the Transformer network.
LLMs are capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language.
Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance.
arXiv Detail & Related papers (2024-02-24T12:31:22Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - End-to-End Open Vocabulary Keyword Search With Multilingual Neural
Representations [7.780766187171571]
We propose a neural ASR-free keyword search model which achieves competitive performance.
We extend this work with multilingual pretraining and detailed analysis of the model.
Our experiments show that the proposed multilingual training significantly improves the model performance.
arXiv Detail & Related papers (2023-08-15T20:33:25Z) - Query Expansion Using Contextual Clue Sampling with Language Models [69.51976926838232]
We propose a combination of an effective filtering strategy and fusion of the retrieved documents based on the generation probability of each context.
Our lexical matching based approach achieves a similar top-5/top-20 retrieval accuracy and higher top-100 accuracy compared with the well-established dense retrieval model DPR.
For end-to-end QA, the reader model also benefits from our method and achieves the highest Exact-Match score against several competitive baselines.
arXiv Detail & Related papers (2022-10-13T15:18:04Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
We present a deep learning approach to build a search system for large clinical vocabularies.
We propose a Triplet-BERT model and a method that generates training data based on semantic training data.
The model is evaluated using five real benchmark data sets and the results show that our approach achieves high results on both free text to concept and concept to searching concept vocabularies.
arXiv Detail & Related papers (2022-01-01T05:15:42Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
We show that cognitive reformulation patterns that mimic user search behaviour are highlighted.
We formalize the application of these patterns by considering a query conceptual representation.
A genetic algorithm-based weighting process allows placing emphasis on terms according to their conceptual role-type.
arXiv Detail & Related papers (2020-04-21T14:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.